
Cubicweb Documentation
Release 3.38.10

Logilab

July 10, 2023

GUIDES

1 A little history. . . 3

2 The Core Concepts of CubicWeb 5
2.1 Cubes . 5
2.2 Instances . 5
2.3 Data Repository . 6
2.4 Web Engine . 6
2.5 Schema (Data Model) . 6
2.6 Registries and application objects . 7
2.7 The RQL query language . 8
2.8 Views . 8
2.9 Hooks and operations . 8

3 Tutorials 11
3.1 Building a simple blog with CubicWeb . 11
3.2 Building a photo gallery with CubicWeb . 27
3.3 Use Windmill with CubicWeb . 59
3.4 Writing text reports with RestructuredText . 62
3.5 Importing relational data into a CubicWeb instance . 62
3.6 Create a Website from scratch with CubicWeb . 71

4 Setup and Administration 93
4.1 Install a CubicWeb environment . 93
4.2 Configure a CubicWeb environment . 95
4.3 Deploy a CubicWeb application . 100
4.4 cubicweb-ctl tool . 102
4.5 Creation of your first instance . 104
4.6 Configure an instance . 105
4.7 User interface for web site configuration . 108
4.8 Multiple sources of data . 110
4.9 LDAP integration . 110
4.10 RQL logs . 112

5 Backend Development 113
5.1 Cubes . 113
5.2 The Registry, selectors and application objects . 118
5.3 Data model . 125
5.4 Data as objects . 143
5.5 Core APIs . 154
5.6 Repository customization . 155

i

5.7 Tests . 172
5.8 Migration . 184
5.9 Profiling and performance . 187
5.10 Full Text Indexing in CubicWeb . 188
5.11 Data Import . 190
5.12 Debug Channels . 194
5.13 API Reference . 196
5.14 Source connections pooler . 196

6 Web Frontend Development 199
6.1 Publisher . 199
6.2 Controllers . 201
6.3 The Request class (cubicweb.web.request) . 202
6.4 RQL search bar . 208
6.5 The View system . 209
6.6 Configuring the user interface . 231
6.7 Ajax . 232
6.8 Javascript . 232
6.9 CSS Stylesheet . 237
6.10 Edition control . 237
6.11 The facets system . 253
6.12 Internationalization . 255
6.13 The property mecanism . 259
6.14 HTTP cache management . 259
6.15 Locate resources . 260
6.16 Static files handling . 260

7 Pyramid 261
7.1 Quick start . 261
7.2 The ‘pyramid’ command . 262
7.3 Settings . 263
7.4 Authentication . 265
7.5 The pyramid debug toolbar . 266

8 Additional Services 273
8.1 Undoing changes in CubicWeb . 273

9 Appendixes 279
9.1 Frequently Asked Questions (FAQ) . 279
9.2 Relation Query Language (RQL) . 286
9.3 Introducing Mercurial . 305
9.4 Installation dependencies . 306
9.5 Javascript docstrings . 307

10 Changelog 311
10.1 3.38.10 (2023-07-10) . 311
10.2 3.38.9 (2023-06-07) . 311
10.3 3.38.8 (2023-03-24) . 311
10.4 3.38.7 (2023-03-07) . 312
10.5 3.38.6 (2023-02-13) . 312
10.6 3.38.5 (2023-01-31) . 312
10.7 3.38.4 (2023-01-17) . 312
10.8 3.38.3 (2023-01-12) . 312
10.9 3.38.2 (2023-01-03) . 313
10.10 3.38.1 (2022-12-05) . 313

ii

10.11 3.38.0 (2022-11-22) . 313
10.12 3.37.17 (2023-07-10) . 316
10.13 3.37.16 (2023-06-07) . 316
10.14 3.37.15 (2023-03-24) . 316
10.15 3.37.14 (2023-03-07) . 316
10.16 3.37.13 (2023-01-27) . 317
10.17 3.37.12 (2023-01-17) . 317
10.18 3.37.11 (2023-01-12) . 317
10.19 3.37.10 (2022-12-05) . 317
10.20 3.37.9 (2022-11-15) . 317
10.21 3.37.8 (2022-10-04) . 318
10.22 3.37.7 (2022-09-22) . 318
10.23 3.37.6 (2022-09-14) . 318
10.24 3.37.5 (2022-08-30) . 318
10.25 3.37.4 (2022-07-21) . 318
10.26 3.37.3 (2022-07-13) . 319
10.27 3.37.2 (2022-06-03) . 319
10.28 3.37.1 (2022-06-01) . 319
10.29 3.37.0 (2022-03-31) . 319
10.30 3.36.15 (2023-03-24) . 320
10.31 3.36.14 (2023-03-02) . 321
10.32 3.36.13 (2023-03-02) . 321
10.33 3.36.12 (2023-01-17) . 321
10.34 3.36.11 (2023-01-12) . 321
10.35 3.36.10 (2022-11-15) . 321
10.36 3.36.9 (2022-10-04) . 322
10.37 3.36.8 (2022-09-22) . 322
10.38 3.36.7 (2022-09-14) . 322
10.39 3.36.6 (2022-08-30) . 322
10.40 3.36.5 (2022-07-21) . 322
10.41 3.36.4 (2022-07-13) . 323
10.42 3.36.3 (2022-06-03) . 323
10.43 3.36.2 (2022-06-01) . 323
10.44 3.36.1 (2022-03-31) . 323
10.45 3.36.0 (2022-03-14) . 324
10.46 3.35.12 (2022-11-15) . 324
10.47 3.35.11 (2022-10-04) . 324
10.48 3.35.10 (2022-09-22) . 325
10.49 3.35.9 (2022-09-14) . 325
10.50 3.35.8 (2022-08-30) . 325
10.51 3.35.7 (2022-07-21) . 325
10.52 3.35.6 (2022-07-13) . 325
10.53 3.35.5 (2022-07-13) . 326
10.54 3.35.4 (2022-06-03) . 326
10.55 3.35.3 (2022-06-01) . 326
10.56 3.35.2 (2022-03-31) . 326
10.57 3.35.1 (2022-03-09) . 327
10.58 3.35 (2022-02-02) . 327
10.59 3.34.3 (2022-03-31) . 328
10.60 3.34.2 (2022-03-09) . 328
10.61 3.34.1 (2021-12-01) . 328
10.62 3.34.0 (2021-11-23) . 328
10.63 3.33.13 (2022-03-09) . 330
10.64 3.33.12 (2021-12-01) . 330

iii

10.65 3.33.11 (2021-11-17) . 330
10.66 3.33.10 (2021-11-17) . 330
10.67 3.33.9 (2021-11-08) . 331
10.68 3.33.8 (2021-11-02) . 331
10.69 3.33.7 (2021-10-12) . 331
10.70 3.33.6 (2021-10-04) . 331
10.71 3.33.5 (2021-09-29) . 331
10.72 3.33.4 (2021-09-24) . 332
10.73 3.33.3 (2021-09-14) . 332
10.74 3.33.2 (2021-09-02) . 332
10.75 3.33.1 (2021-08-31) . 332
10.76 3.33.0 (2021-08-03) . 333
10.77 3.32.14 (2021-12-01) . 334
10.78 3.32.13 (2021-11-17) . 334
10.79 3.32.12 (2021-11-17) . 334
10.80 3.32.11 (2021-11-08) . 334
10.81 3.32.10 (2021-11-02) . 335
10.82 3.32.9 (2021-10-12) . 335
10.83 3.32.8 (2021-10-04) . 335
10.84 3.32.7 (2021-09-29) . 335
10.85 3.32.6 (2021-09-24) . 335
10.86 3.32.5 (2021-09-14) . 336
10.87 3.32.4 (2021-09-02) . 336
10.88 3.32.3 (2021-08-31) . 336
10.89 3.32.2 (2021-07-30) . 336
10.90 3.32.1 (2021-07-23) . 337
10.91 3.32.0 (2021-07-13) . 337
10.92 3.31.9 (2021-11-17) . 339
10.93 3.31.8 (2021-11-17) . 339
10.94 3.31.7 (2021-11-02) . 340
10.95 3.31.6 (2021-09-28) . 340
10.96 3.31.5 (2021-09-24) . 340
10.97 3.31.4 (2021-09-14) . 340
10.98 3.31.3 (2021-07-23) . 340
10.99 3.31.2 (2021-07-19) . 341
10.1003.31.1 (2021-05-18) . 341
10.1013.31 (2021-05-04) . 341
10.1023.30.1 (2021-07-23) . 342
10.1033.30.0 (2021-03-16) . 342
10.1043.29.6 (2021-10-07) . 345
10.1053.29 . 345
10.1063.28.2 . 346
10.1073.28.1 . 346
10.1083.28 . 346
10.1093.27 (31 January 2020) . 347
10.1103.26 (1 February 2018) . 349
10.1113.25 (14 April 2017) . 350
10.1123.24 (2 November 2016) . 351
10.1133.23 (24 June 2016) . 352
10.1143.22 (4 January 2016) . 353
10.1153.21 (10 July 2015) . 355
10.1163.20 (06/01/2015) . 356
10.1173.19 (28/04/2015) . 357
10.1183.18 (10/01/2014) . 360

iv

10.1193.17 (02/05/2013) . 361
10.1203.16 (25/01/2013) . 362
10.1213.15 (12/04/2012) . 363
10.1223.14 (09/11/2011) . 365

11 API 369
11.1 cubicweb . 369
11.2 cubicweb.appobject . 373
11.3 cubicweb.cwvreg . 374
11.4 logilab.common.registry . 377
11.5 cubicweb.dataimport . 382
11.6 cubicweb.predicates . 383
11.7 cubicweb.pyramid . 389
11.8 cubicweb.req . 397
11.9 cubicweb.rset . 397
11.10 cubicweb.web.views.urlpublishing . 400
11.11 cubicweb.web.views.urlrewrite . 401
11.12 cubicweb.web . 402

12 CubicWeb - The Semantic Web is a construction game! 403
12.1 Main Features . 403
12.2 First steps . 403
12.3 Cubicweb core principle . 404
12.4 Routing . 404
12.5 Front development . 405
12.6 Data model and management . 405
12.7 Security . 406
12.8 Migrate your schema . 406
12.9 Cubicweb configuration files . 406
12.10 Common Web application tools . 406
12.11 Development . 407
12.12 System administration . 407
12.13 CubicWeb’s ecosystem . 408
12.14 How to contribute . 408

Python Module Index 409

Index 411

v

vi

Cubicweb Documentation, Release 3.38.10

This first part of the book offers different reading path to discover the CubicWeb framework, provides a tutorial to get
a quick overview of its features and lists its key concepts.

GUIDES 1

Cubicweb Documentation, Release 3.38.10

2 GUIDES

CHAPTER

ONE

A LITTLE HISTORY. . .

CubicWeb is a semantic web application framework that Logilab started developing in 2001 as an offspring of its Narval
research project. CubicWeb is written in Python and includes a data server and a web engine.

Its data server publishes data federated from different sources like SQL databases, LDAP directories, VCS repositories
or even from other CubicWeb data servers.

Its web engine was designed to let the final user control what content to select and how to display it. It allows one to
browse the federated data sources and display the results with the rendering that best fits the context. This flexibility of
the user interface gives back to the user some capabilities usually only accessible to application developers.

CubicWeb has been developed by Logilab and used in-house for many years before it was first installed for its clients
in 2006 as version 2.

In 2008, CubicWeb version 3 became downloadable for free under the terms of the LGPL license. Its community is
now steadily growing without hampering the fast-paced stream of changes thanks to the time and energy originally put
in the design of the framework.

3

https://www.logilab.fr/
https://www.logilab.org/project/narval-moved
http://en.wikipedia.org/wiki/Revision_control
https://www.logilab.fr/

Cubicweb Documentation, Release 3.38.10

4 Chapter 1. A little history. . .

CHAPTER

TWO

THE CORE CONCEPTS OF CUBICWEB

This section defines some terms and core concepts of the CubicWeb framework. To avoid confusion while reading this
book, take time to go through the following definitions and use this section as a reference during your reading.

2.1 Cubes

A cube is a software component made of three parts:

• its data model (schema),

• its logic (entities) and

• its user interface (views).

A cube can use other cubes as building blocks and assemble them to provide a whole with richer functionnalities
than its parts. The cubes cubicweb-blog and cubicweb-comment could be used to make a cube named myblog with
commentable blog entries.

The CubicWeb.org Forge offers a large number of cubes developed by the community and available under a free software
license.

Note: The command cubicweb-ctl list displays the list of available cubes.

2.2 Instances

An instance is a runnable application installed on a computer and based on one or more cubes.

The instance directory contains the configuration files. Several instances can be created and based on the same cube.
For example, several software forges can be set up on one computer system based on the cubicweb-forge cube.

The command cubicweb-ctl list also displays the list of instances installed on your system.

Note: The term application is used to refer to “something that should do something as a whole”, eg more like a project
and so can refer to an instance or to a cube, depending on the context. This book will try to use application, cube and
instance as appropriate.

5

https://forge.extranet.logilab.fr/cubicweb/cubes/blog
https://forge.extranet.logilab.fr/cubicweb/cubes/comment
https://forge.extranet.logilab.fr/cubicweb
https://forge.extranet.logilab.fr/cubicweb/cubes/forge

Cubicweb Documentation, Release 3.38.10

2.3 Data Repository

The data repository1 encapsulates and groups an access to one or more data sources (including SQL databases, LDAP
repositories, other CubicWeb instance repositories, filesystems, Google AppEngine’s DataStore, etc).

All interactions with the repository are done using the Relation Query Language (RQL syntax). The repository federates
the data sources and hides them from the querier, which does not realize when a query spans several data sources and
requires running sub-queries and merges to complete.

Application logic can be mapped to data events happenning within the repository, like creation of entities, deletion of
relations, etc. This is used for example to send email notifications when the state of an object changes. See Hooks and
operations below.

2.4 Web Engine

The web engine replies to http requests and runs the user interface.

By default the web engine provides a CRUD user interface based on the data model of the instance. Entities can be
created, displayed, updated and deleted. As the default user interface is not very fancy, it is usually necessary to develop
your own.

2.5 Schema (Data Model)

The data model of a cube is described as an entity-relationship schema using a comprehensive language made of Python
classes imported from the yams library.

An entity type defines a sequence of attributes. Attributes may be of the following types: String, Int, Float, Boolean,
Date, Time, Datetime, Interval, Password, Bytes, RichString.

A relation type is used to define an oriented binary relation between entity types. The left-hand part of a relation is
named the subject and the right-hand part is named the object.

A relation definition is a triple (subject entity type, relation type, object entity type) associated with a set of properties
such as cardinality, constraints, etc.

Permissions can be set on entity types or relation definition to control who will be able to create, read, update or delete
entities and relations. Permissions are granted to groups (to which users may belong) or using rql expressions (if the
rql expression returns some results, the permission is granted).

Some meta-data necessary to the system are added to the data model. That includes entities like users and groups, the
entities used to store the data model itself and attributes like unique identifier, creation date, creator, etc.

When you create a new CubicWeb instance, the schema is stored in the database. When the cubes the instance is based
on evolve, they may change their data model and provide migration scripts that will be executed when the administrator
will run the upgrade process for the instance.

1 not to be confused with a Mercurial repository or a Debian repository.

6 Chapter 2. The Core Concepts of CubicWeb

http://en.wikipedia.org/wiki/Create,_read,_update_and_delete
https://www.logilab.org/project/yams/

Cubicweb Documentation, Release 3.38.10

2.6 Registries and application objects

2.6.1 Application objects

Besides a few core functionalities, almost every feature of the framework is achieved by dynamic objects (application
objects or appobjects) stored in a two-levels registry. Each object is affected to a registry with an identifier in this
registry. You may have more than one object sharing an identifier in the same registry:

object’s __registry__ : object’s __regid__ : [list of app objects]

In other words, the registry contains several (sub-)registries which hold a list of appobjects associated to an identifier.

The base class of appobjects is cubicweb.appobject.AppObject.

2.6.2 Selectors

At runtime, appobjects can be selected in a registry according to some contextual information. Selection is done by
comparing the score returned by each appobject’s selector.

The better the object fits the context, the higher the score. Scores are the glue that ties appobjects to the data model.
Using them appropriately is an essential part of the construction of well behaved cubes.

CubicWeb provides a set of basic selectors that may be parametrized. Also, selectors can be combined with the ~ unary
operator (negation) and the binary operators & and | (respectivly ‘and’ and ‘or’) to build more complex selectors. Of
course complex selectors may be combined too. Last but not least, you can write your own selectors.

2.6.3 The registry

At startup, the registry inspects a number of directories looking for compatible class definitions. After a recording
process, the objects are assigned to registries and become available through the selection process.

In a cube, application object classes are looked in the following modules or packages:

• entities

• views

• hooks

• sobjects

There are three common ways to look up some application object from a registry:

• get the most appropriate object by specifying an identifier and context objects. The object with the greatest score
is selected. There should always be a single appobject with a greater score than others for a particular context.

• get all objects applying to a context by specifying a registry. A list of objects will be returned containing the
object with the highest score (> 0) for each identifier in that registry.

• get the object within a particular registry/identifier. No selection process is involved: the registry will expect to
find a single object in that cell.

2.6. Registries and application objects 7

Cubicweb Documentation, Release 3.38.10

2.7 The RQL query language

No need for a complicated ORM when you have a powerful data manipulation language.

All the persistent data in a CubicWeb instance is retrieved and modified using RQL (see Introduction).

This query language is inspired by SQL but is on a higher level in order to emphasize browsing relations.

2.7.1 Result set

Every request made (using RQL) to the data repository returns an object we call a Result Set. It enables easy use
of the retrieved data, providing a translation layer between the backend’s native datatypes and CubicWeb schema’s
EntityTypes.

Result sets provide access to the raw data, yielding either basic Python data types, or schema-defined high-level entities,
in a straightforward way.

2.8 Views

CubicWeb is data driven
The view system is loosely coupled to data through the selection system explained above. Views are application objects
with a dedicated interface to ‘render’ something, eg producing some html, text, xml, pdf, or whatsover that can be
displayed to a user.

Views actually are partitioned into different kind of objects such as templates, boxes, components and proper views,
which are more high-level abstraction useful to build the user interface in an object oriented way.

2.9 Hooks and operations

CubicWeb provides an extensible data repository
The data model defined using Yams types allows to express the data model in a comfortable way. However several
aspects of the data model can not be expressed there. For instance:

• managing computed attributes

• enforcing complicated business rules

• real-world side-effects linked to data events (email notification being a prime example)

The hook system is much like the triggers of an SQL database engine, except that:

• it is not limited to one specific SQL backend (every one of them having an idiomatic way to encode triggers),
nor to SQL backends at all (think about LDAP or a Mercurial repository)

• it is well-coupled to the rest of the framework

Hooks are also application objects (in the hooks registry) and selected on events such as after/before add/update/delete
on entities/relations, server startup or shutdown, etc.

Operations may be instantiated by hooks to do further processing at different steps of the transaction’s commit / rollback,
which usually can not be done safely at the hook execution time.

Hooks and operation are an essential building block of any moderately complicated cubicweb application.

8 Chapter 2. The Core Concepts of CubicWeb

Cubicweb Documentation, Release 3.38.10

Note: RQL queries executed in hooks and operations are unsafe by default, i.e. the read and write security is deacti-
vated unless explicitly asked.

2.9. Hooks and operations 9

Cubicweb Documentation, Release 3.38.10

10 Chapter 2. The Core Concepts of CubicWeb

CHAPTER

THREE

TUTORIALS

Here are a few tutorials with different difficulty levels.

Beginners will want to start with the blog building tutorial giving a short introduction to the basic concepts. Then the
photo gallery construction tutorial highlights more advanced concepts such as unit tests, security settings and migration
scripts.

The other tutorials cover specific topics you can learn about when you understand the basics.

3.1 Building a simple blog with CubicWeb

CubicWeb is a semantic web application framework which favors reuse and object-oriented designs.

This tutorial is designed to help you make your very first steps with CubicWeb. It will guide you through basic concepts
such as:

• getting an application running by using existing components

• discovering the default user interface

• extending and customizing the look and feel of that application

More advanced concepts are covered in Building a photo gallery with CubicWeb.

3.1.1 Some vocabulary

CubicWeb comes with a few words of vocabulary that you should know to understand what we’re talking about. To
follow this tutorial, you should at least know that:

• a cube is a component that usually includes a model defining some data types and a set of views to display them.
A cube can be built by assembling other cubes;

• an instance is a specific installation of one or more cubes and includes configuration files, a web server and a
database.

Reading The Core Concepts of CubicWeb for more vocabulary will be required at some point.

Now, let’s start the hot stuff!

11

Cubicweb Documentation, Release 3.38.10

Get a blog running in five minutes!

First choose and follow the installation method of your choice.

Once you have CubicWeb setup, install the blog cube using the following command:

pip install cubicweb-blog

Then you can create and initialize your blog instance:

cubicweb-ctl create blog myblog

Here the blog argument tells the command to use the blog cube as a base for your instance named myblog.

Note: If you get a permission error of the kind OSError: [Errno 13] Permission denied: '/etc/
cubicweb.d/myblog' , read the next section.

This command will ask you a series of question. The first one is about the database engine to use (SQLite or Post-
greSQL). For this tutorial, we will use SQLite as it is easier to setup and does not need a database server. In production
environments, PostgreSQL is recommended as it offers better performances. More information on database configura-
tion can be found here.

The command will also create a user used to manage your instance, for which you will be asked to give a name and
password.

You can leave the remaining questions to their default by simply pressing Enter.

Note: If you get errors during installation such as:

while handling language es: [Errno 2] No such file or directory: 'msgcat': 'msgcat'
while handling language en: [Errno 2] No such file or directory: 'msgcat': 'msgcat'
while handling language fr: [Errno 2] No such file or directory: 'msgcat': 'msgcat'

This means you are missing the gettext dependency. To fix this, follow the instructions in the section Installing
Dependencies. Then either restart the installation process or run cubicweb-ctl i18ncubicweb && cubicweb-ctl
i18ncube blog after installation. More information in Internationalization.

Then you need to tell CubicWeb your instance is going to run on the localhost by editing ~/etc/cubicweb.d/myblog/
all-in-one.conf. In this file under the [MAIN] section, replace the line #host=` by `host=localhost.

Once this process is complete (including database initialisation), you can start your instance by using:

cubicweb-ctl pyramid -D myblog

The -D option activates the debugging mode. Removing it will launch the instance as a daemon in the background.

This is it, your blog is functional and running at http://localhost:8080!

12 Chapter 3. Tutorials

https://forge.extranet.logilab.fr/cubicweb/cubes/blog
http://localhost:8080

Cubicweb Documentation, Release 3.38.10

About file system permissions

Unless you installed from source, the above commands will initialize your instance as a regular user in your home
directory (under ~/etc/cubicweb.d/). If you installed from source, your instance will be created in system directories
and thus will require root privileges. To change this behavior, please have a look at the Resource mode section.

Instance parameters

If you would like to change database parameters such as the database host or the user name used to connect to the
database, edit the sources file located in the /etc/cubicweb.d/myblog directory.

Then relaunch the database creation:

cubicweb-ctl db-create myblog

Other parameters, like web server or emails parameters, can be modified in the /etc/cubicweb.d/myblog/
all-in-one.conf file (or ~/etc/cubicweb.d/myblog/all-in-one.conf depending on your configuration.)

You’ll have to restart the instance after modification in one of those files.

Discovering the web interface

You can now access your web instance to create blogs and post messages by visiting the URL http://localhost:8080.

By default, anonymous access is disabled, so a login form will appear.

If you asked to allow anonymous access when initializing the instance, click on the ‘login’ link in the top right hand
corner. To login, you need to use the admin account you specified at the time you initialized the database with
cubicweb-ctl create.

3.1. Building a simple blog with CubicWeb 13

http://localhost:8080

Cubicweb Documentation, Release 3.38.10

Once authenticated, you can start playing with your instance. You will notice the index page has changed compared
to the anonymous access view. There are more entries in the Manage section and and some new [+] buttons have
appeared next to the entities. These allow you to edit and add new entries in the database.

Note: If you find untranslated strings such as blog.latest_blogs in the sidebar:

This means you are missing the gettext dependency. To fix this, follow the instructions in the section Installing
Dependencies. Then either restart the installation process or run cubicweb-ctl i18ncubicweb && cubicweb-ctl
i18ncube blog after installation. More information in Internationalization.

14 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Minimal configuration

Before creating entities, let’s change the unset title string in the header. This string is set by a CubicWeb system
properties and represents the site’s title. To modify it, click on the site configuration link in the Manage section.

This will open a new page with different categories. You will find the site’s title in the ui section. Simply set it to the
desired value and click the ‘button_ok’ button.

You should see a changes applied message in green at the top of the section. You can now go back to the index
page by clicking on the CubicWeb logo in the upper left-hand corner.

You will much likely still see unset title at this point. This is because by default the index page is cached for
performance reasons. Force a refresh of the page (Ctrl-R in Firefox) and you should now see the title you entered.

3.1. Building a simple blog with CubicWeb 15

Cubicweb Documentation, Release 3.38.10

Adding entities

The blog cube defines several entity types. For example, the Blog entity is a container for a BlogEntry (i.e. posts)
on a particular topic. We can get a graphical view of the schema by clicking on the data model schema link in the
Manage section of the index page:

Note: If you get the error FileNotFoundError: [Errno 2] File not found: dot: 'dot' when access-
ing the page, this means you are missing the package graphviz. To fix this, follow the instructions in the section
Installing Dependencies.

Notice that like most other things we will see in this tutorial, this schema is generated by the framework according to
the application’s model. In our case the model is defined by the blog cube.

Now let’s create a few of those entities.

16 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Adding a blog

Clicking on the [+] at the left of the Blog link on the index page will open an HTML form to create a new blog.

For instance, call this new blog Tech-blog and type in everything about technology as the description , then
validate the form by clicking on validate. You will be redirected to the primary view of the newly created blog.

Adding a blog post

There are several ways to add a blog entry. The simplest is to click on the add blog entry link in the actions box on
the left while viewing the blog you just created. You will then see a form to create a post, with a blog entry of field
preset to the blog you are coming from. Enter a title, some content, click the validate button and you’re done. You
will be redirected to the blog’s primary view, though you now see that it contains the blog post you have just created.

Notice how some new items appeared in the left column.

You can achieve the same result by clicking on the [+] at the left of the Blog entry link on the index page. Since
there is no context information, the blog entry of selector will not be preset to a blog if you have more than one.

If you click on the modify link in the action box, you will be taken back to the form to edit the entity you just created.
But the form will now have another section with a combo-box entitled add relation providing a generic way to edit
relations. Choose the relation you want to add and a second combo box will appear where you can pick existing entities.

3.1. Building a simple blog with CubicWeb 17

Cubicweb Documentation, Release 3.38.10

If there are too many of them, you will be offered to navigate to the target entity. This will open a new page and you
will be taken back to your form once you have selected an entity.

This combo-box cannot appear until the entity is actually created, explaining why you could not see it at creation time
using the first form. Another way to show this combo-box is to hit apply instead of validate to create the entity
without closing the form.

About UI auto-adaptation

One of the things making CubicWeb different from other frameworks is its automatic user interface adapting itself
according to the data being displayed. Let’s see an example.

If you go back to the home page and click on the Blog link, you will be redirected to the blog’s primary view as we
have seen earlier. Now add another blog, go back to the index page, and click again on this link. You will see a very
different view (namely the list view).

In the first case the framework chose to use the primary view since there was only one entity in the data to be displayed.
Now that there are two entities, the list view is more appropriate and hence is being used.

There are various other places where CubicWeb adapts to display data in the best way, the main being provided by the
view selection mechanism that will be detailed later.

Digging deeper

By following the principles explained above you should now be able to create new users for your application and to
configure your instance. You will notice that the index page lists a lot of types we did not talk know about. Most are
built-in types provided by the framework to make the whole system work. You may ignore them in a first time and
discover them as time goes.

One thing that is worth playing with is the search box. It may be used in various ways, from simple full text search to
advanced queries using the RQL syntax .

18 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Customizing your application

Usually you won’t get enough by assembling cubes out-of-the-box. You will want to customize them to get personal
look and feel, add your own data model and so on. Or maybe start from scratch?

So let’s get a bit deeper and start coding our own cube. In our case, we want to customize the blog we created to add
more features to it.

Creating your own cube

Once your CubicWeb development environment is set up, you can create a new cube:

cubicweb-ctl newcube mycube

This will create a a directory named cubicweb-mycube reflecting the structure described in Standard structure for a
cube.

To install your new cube on the virtual environment created previously, run the following command in
cubicweb-mycube directory:

pip install -e .

All cubicweb-ctl commands are described in details in cubicweb-ctl tool.

Cube metadata

The folder cubicweb_mycube/ contains the actual code and metadata for your cube. In this folder, a simple set of
metadata about your cube are stored in the __pkginfo__.py file. In our case, we want to extend the blog cube, so we
have to tell that our cube depends on this cube by modifying the __depends__ dictionary in that file:

__depends__ = {"cubicweb": ">= 3.35.0", "cubicweb-blog": None}

where None means we do not depend on a particular version of the cube.

Extending the data model

The data model or schema is the core of your CubicWeb application. It defines the type of content your application will
handle. It is defined in the file schema.py of the cube.

Defining our model

Let’s say we want a new entity type named Community with a name and a description. A Community will hold several
blogs.

We can edit the schema.py as follows:

from yams.buildobjs import EntityType, RelationDefinition, String, RichString

class Community(EntityType):
name = String(maxsize=50, required=True)
description = RichString()

(continues on next page)

3.1. Building a simple blog with CubicWeb 19

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

class community_blog(RelationDefinition):
subject = 'Community'
object = 'Blog'
cardinality = '*?'
composite = 'subject'

The import from the yams package provides necessary classes to build the schema.

This file defines the following:

• a Community has a name and a description as attributes

– the name is a string which is required and cannot be longer than 50 characters

– the description is an unconstrained string and may contains rich content such as HTML or Restructured
text.

• a Community may be linked to a Blog using the community_blog relation

– * means a community may be linked from 0 to N blog, ? means a blog may be linked to 0 to 1 community.
For completeness, you can also use + for 1 to N, and 1 for a single mandatory relation (e.g. one to one);

– this is a composite relation where Community (e.g. the subject of the relation) is the composite. That means
that if you delete a community, its blog will be deleted as well.

Of course, there are a lot of other data types and relations such as constraints, permissions, etc, that may be defined in
the schema but those will not be covered in this tutorial.

Notice that our schema refers to the Blog entity type which is not defined here. But we know this type is available since
we depend on the blog cube defining it.

Applying changes from the model into our instance

The problem is that we created an instance using the blog cube, not our mycube cube. If we do not do anything there
is no way we’ll see anything changing in the myblog instance.

As we do not have any really valuable data in the instance, an easy way would be to trash it and recreated it. First stop
the running instance by pressing Ctrl-C in the terminal running the server in debug mode. Then run the following
commands:

cubicweb-ctl delete myblog
cubicweb-ctl create mycube myblog
cubicweb-ctl pyramid -D myblog

Another way is to add our cube to the instance using the cubicweb-ctl shell facility. It is a python shell connected
to the instance with some special commands available to manipulate it (the same as you’ll have in migration scripts,
which are not covered in this tutorial). In that case, we are interested in the add_cube command. First stop the instance
by pressing Ctrl-C in the terminal running the server in debug mode and enter the shell using the following command:

cubicweb-ctl shell myblog

Then in the python shell, type the add_cube command:

add_cube('mycube')

Press Ctrl-D to exit then restart your instance:

20 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

cubicweb-ctl pyramid -D myblog

The add_cube command is enough since it automatically updates our application to the cube’s schema. There are
plenty of other migration commands of a more finer grain. They are described in Migration

If you take another look at the schema on your instance, you will see that changes to the data model have actually been
applied (meaning database schema updates and all necessary actions have been done).

If you follow the Site information link in the home page, you will also see that the instance is using blog and
mycube cubes (sioc is a dependency of the blog cube).

You can now add some communities and link them to a blog. You will see that the framework provides default views for
this entity type (we have not yet defined any view for it!), and also that the blog primary view will show the community
it is linked to if any. All this thanks to the model driven interface provided by the framework.

We will now see how to redefine each of them according to your needs and preferences.

Defining your views

CubicWeb provides a lot of standard views in the directory cubicweb/web/views/. We already talked about primary
and list views, which are views applying to one or more entities.

A view is defined by a python class which includes:

• an identifier: all objects used to build the user interface in CubicWeb are recorded in a registry and this identifier
will be used as a key in that registry to store the view. There may be multiple views for the same identifier.

• a selector, which is a kind of filter telling how well a view suits to a particular context. When looking for a
particular view (e.g. given an identifier), CubicWeb computes for each available view with that identifier a score
which is returned by the selector. Then the view with the highest score is used. The standard library of predicates
is in cubicweb.predicates.

3.1. Building a simple blog with CubicWeb 21

Cubicweb Documentation, Release 3.38.10

A view has a set of methods inherited from the cubicweb.view.View class, though you do not usually derive directly
from this class but from one of its more specific child class.

Last but not least, CubicWeb provides a set of default views accepting any kind of entities.

To illustrate this, we will create a community as we already have done for other entity types through the index page.
You will get a screen similar to this:

Changing the layout of the application

The layout is the general organization of the pages in the website. Views generating the layout are sometimes referred
to as templates. They are implemented by the framework in the module cubicweb.web.views.basetemplates. By
overriding classes in this module, you can customize whatever part you wish of the default layout.

CubicWeb provides many other ways to customize the interface thanks to actions and components (which you can
individually (de)activate, control their location, customize their look. . .) as well as “simple” CSS customization. You
should first try to achieve your goal using such fine grained parametrization rather then overriding a whole template,
which usually embeds customisation access points that you may loose in the process.

But for the sake of example, let’s say we want to change the generic page footer. We can simply add in the file
cubicweb_mycube/views.py the code below:

from cubicweb.web.views import basetemplates

class MyHTMLPageFooter(basetemplates.HTMLPageFooter):

def footer_content(self):
self.w(u'This website has been created with

→˓CubicWeb.')

def registration_callback(vreg):
vreg.register_all(globals().values(), __name__, (MyHTMLPageFooter,))
vreg.register_and_replace(MyHTMLPageFooter, basetemplates.HTMLPageFooter)

• Our class inherits from the default page footer to ease getting things right, but this is not mandatory.

• When we want to write something to the output stream, we simply call self.w, which must be passed a unicode
string.

• Since both HTMLPageFooter and MyHTMLPageFooter have the same selector, hence the same score the frame-
work would not be able to choose which footer to use. In this case we want our footer to replace the default one,
so we have to define a registration_callback() function to control object registration. The first instruction
tells to register everything in the module but the MyHTMLPageFooter class, then the second to register it instead
of HTMLPageFooter. Without this function, everything in the module is registered blindly.

22 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Note: When a view is modified while running in debug mode, it is not required to restart the instance server. Save the
Python file and reload the page in your web browser to view the changes.

You will now see this simple footer on every page of the website.

Primary view customization

The primary view (i.e. any view with the identifier set to primary) is the one used to display all the information about
a single entity. The standard primary view is one of the most sophisticated views of all. It has several customisation
points, but its power comes with uicfg allowing you to control it without having to subclass it.

However this is a bit off-topic for this first tutorial. Let’s say we simply want a custom primary view for the Community
entity type, using directly the view interface without trying to benefit from the default implementation (you should do
that though if you’re rewriting reusable cubes; everything is described in more details in The Primary View).

here is the code that we will put in the file cubicweb_mycube/views.py of our cube:

from cubicweb.predicates import is_instance
from cubicweb.web.views import primary

class CommunityPrimaryView(primary.PrimaryView):
__select__ = is_instance('Community')

def cell_call(self, row, col):
entity = self.cw_rset.get_entity(row, col)
self.w(u'<h1>Welcome to the "%s" community</h1>' % entity.printable_value('name

→˓'))

if entity.description:
self.w(u'<p>%s</p>' % entity.printable_value('description'))

What’s going on here?

• Our class inherits from the default primary view, here mainly to get the correct view identifier, since we do not
use any of its features.

• We set on it a selector telling that it only applies when trying to display some entity of the Community type. This
is enough to get an higher score than the default view for entities of this type.

• A view that applies to an entity usually has to define the method cell_call as an entry point. This receives the
arguments row and col telling to which entity in the result set the view is applied. We can then get this entity
from the result set (self.cw_rset) by using the get_entity method.

• To ease thing, we access our entity’s attribute to display using its printable_value method, which will handle
formatting and escaping when necessary. As you can see, you can also access attributes by their name on the
entity to get the raw value.

You can now reload the page of the community we just created and see the changes.

3.1. Building a simple blog with CubicWeb 23

Cubicweb Documentation, Release 3.38.10

We have seen here a lot of thing you will have to deal with to write views in CubicWeb. The good news is that this is
almost everything that is used to build higher level layers.

Note: As things get complicated and the volume of code in your cube increases, you can of course still split your views
module into a python package with subpackages.

You can find more details about views and selectors in Principles.

Write entities to add logic in your data

CubicWeb provides an ORM (Object-Relational Mapper) to programmatically manipulate entities (just like the one we
have fetched earlier by calling get_entity on a result set). By default, entity types are instances of the AnyEntity
class, which holds a set of predefined methods as well as properties automatically generated for attributes/relations of
the type it represents.

You can redefine each entity to provide additional methods or whatever you want to help you write your application.
Customizing an entity requires that your entity:

• inherits from cubicweb.entities.AnyEntity or any subclass

• defines a __regid__ linked to the corresponding data type of your schema

You may then want to add your own methods, override default implementation of some method, etc. . . To do so, write
this code in mycube/entities.py:

from cubicweb.entities import AnyEntity, fetch_config

class Community(AnyEntity):
"""customized class for Community entities"""
__regid__ = 'Community'

fetch_attrs, cw_fetch_order = fetch_config(['name'])

def dc_title(self):
return self.name

def display_cw_logo(self):
return 'CubicWeb' in self.name

In this example:

• we used the fetch_config() convenience function to tell which attributes should be prefetched by the ORM
when looking for some related entities of this type, and how they should be ordered

• we overrode the standard dc_title()method, used in various place in the interface to display the entity (though
in this case the default implementation would have had the same result)

24 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

• we implemented here a method display_cw_logo() which tests if the community title contains CubicWeb. It
can then be used when you are writing code involving Community entities in your views, hooks, etc. For instance,
you can modify your previous views as follows:

class CommunityPrimaryView(primary.PrimaryView):
__select__ = is_instance('Community')

def cell_call(self, row, col):
entity = self.cw_rset.get_entity(row, col)
self.w(u'<h1>Welcome to the "%s" community</h1>' % entity.printable_value('name

→˓'))

if entity.display_cw_logo():
self.w(u'')

if entity.description:
self.w(u'<p>%s</p>' % entity.printable_value('description'))

Then each community whose description contains ‘CW’ is shown with the CubicWeb logo in front of it.

Note: As for view, you don’t have to restart your instance when modifying some entity classes while your server is
running in debug mode, the code will be automatically reloaded.

Extending the application by using more cubes!

One of the goals of the CubicWeb framework is to have truly reusable components. To do so they must behave nicely
when plugged into the application and be easily customisable, from the data model to the user interface. Thanks to
systems such as the selection mechanism and the choice to write views as python code, we can build our pages using
true object oriented programming techniques to achieve this goal.

A library of standard cubes is available at the CubicWeb Forge to address a lot of common problems such as manipulat-
ing files, people, todos, etc. In our community blog case, we could be interested for instance in functionalities provided
by the comment and tag cubes. comment provides threaded discussion functionalities and tag a simple tag mechanism
to classify content. We will first modify our cube’s __pkginfo__.py file to add those cubes as dependencies:

__depends__ = {'cubicweb': '>= 3.35.0',
'cubicweb-blog': None,
'cubicweb-comment': None,
'cubicweb-tag': None}

Now we will simply tell on which entity types we want to activate the comment and tag cubes by adding respectively
the comments and tags relations on them in our schema (schema.py).

class comments(RelationDefinition):
subject = 'Comment'
object = 'BlogEntry'
cardinality = '1*'
composite = 'object'

class tags(RelationDefinition):
(continues on next page)

3.1. Building a simple blog with CubicWeb 25

https://forge.extranet.logilab.fr/cubicweb/cubes
https://forge.extranet.logilab.fr/cubicweb/cubes/comment
https://forge.extranet.logilab.fr/cubicweb/cubes/tag

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

subject = 'Tag'
object = ('Community', 'BlogEntry')

In the above code we activated comments on BlogEntry entities and tags on both Community and BlogEntry. Various
views from both comment and tag cubes will then be automatically displayed when one of those relations is supported.

Let’s install the cubes and synchronize the data model as we’ve done earlier. So first install the cubes:

pip install cubicweb-comment cubicweb-tag

Stop the instance by pressing Ctrl-C in the terminal running the server in debug mode and enter the migration shell:

cubicweb-ctl shell myblog

Add the new cubes and exit with Ctrl-D:

add_cubes(('comment', 'tag'))

Then restart the instance with cubicweb-ctl pyramid -D myblog and open a blog entry:

As you can see, we now have a box displaying tags and a section proposing to add a comment and displaying existing
one below the post. All this without changing anything in our views, thanks to the design of generic views provided by
the framework. Though if we take a look at a community, we will not see the tags box! This is because by default this
box tries to locate itself in the right column within the white frame, and this column is handled by the primary view we
overrode. Let’s change our view to make it more extensible, by keeping both our custom rendering but also extension
points provided by the default implementation.

Add the following code in cubicweb_mycube/views.py:

class CommunityPrimaryView(primary.PrimaryView):
__select__ = is_instance('Community')

def render_entity_title(self, entity):
self.w(u'<h1>Welcome to the "%s" community</h1>' % entity.printable_value('name

→˓'))

def render_entity_attributes(self, entity):
if entity.display_cw_logo():

self.w(u'')

if entity.description:
self.w(u'<p>%s</p>' % entity.printable_value('description'))

26 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

By reloading the Community page, it will now appear properly:

You can control part of the interface independently from each others, piece by piece.

What’s next?

In this tutorial we have seen you can build a web application in a few minutes simply by defining a data model. You get a
working application which you can then customize without breaking your workflow. You can show results to customers
right from the beginning to make the right decisions early in the process. This is important in agile development
practices.

The next steps will be to discover hooks, security, data sources, digging deeper into view writing and interface cus-
tomisation. . . Still a lot of fun stuff to discover! You will find more tutorials and howtos in the blog published on the
CubicWeb.org website.

3.2 Building a photo gallery with CubicWeb

3.2.1 Desired features

• basically a photo gallery

• photo stored on the file system and displayed dynamically through a web interface

• navigation through folder (album), tags, geographical zone, people on the picture. . . using facets

• advanced security (not everyone can see everything). More on this later.

Cube creation and schema definition

Step 1: creating a virtual environment

Fisrt I need a python virtual environment with cubicweb:

python3 -m venv venv
source venv/bin/activate
pip install cubicweb

3.2. Building a photo gallery with CubicWeb 27

Cubicweb Documentation, Release 3.38.10

Step 2: creating a new cube for my web site

One note about my development environment: I wanted to use the packaged version of CubicWeb and cubes while
keeping my cube in the current directory, let’s say ~/src/cubes:

cd ~/src/cubes
CW_MODE=user

I can now create the cube which will hold custom code for this web site using:

cubicweb-ctl newcube sytweb

Enter a short description and this will create your new cube in the cubicweb-sytweb folder.

Step 3: pick building blocks into existing cubes

Almost everything I want to handle in my web-site is somehow already modelized in existing cubes that I’ll extend for
my need. So I’ll pick the following cubes:

• folder, containing the Folder entity type, which will be used as both ‘album’ and a way to map file system folders.
Entities are added to a given folder using the filed_under relation.

• file, containing File entity type, gallery view, and a file system import utility.

• person, containing the Person entity type plus some basic views.

• comment, providing a full commenting system allowing one to comment entity types supporting the comments
relation by adding a Comment entity.

• tag, providing a full tagging system as an easy and powerful way to classify entities supporting the tags relation
by linking the to Tag entities. This will allows navigation into a large number of picture.

Ok, now I’ll tell my cube requires all this by editing cubicweb-sytweb/cubicweb_sytweb/__pkginfo__.py:

__depends__ = {'cubicweb': '>= 3.32.7',
'cubicweb-file': '>= 1.9.0',
'cubicweb-folder': '>= 1.1.0',
'cubicweb-person': '>= 1.2.0',
'cubicweb-comment': '>= 1.2.0',
'cubicweb-tag': '>= 1.2.0'
}

Notice that you can express minimal version of the cube that should be used, None meaning whatever version available.
All packages starting with ‘cubicweb-’ will be recognized as being cube, not bare python packages.

Now, I need to install all the dependencies:

cd cubicweb-sytweb
pip install -e .
pip install cubicweb
pip install psycopg2-binary # for postgresql

28 Chapter 3. Tutorials

https://forge.extranet.logilab.fr/cubicweb/cubes/folder
https://forge.extranet.logilab.fr/cubicweb/cubes/file
https://forge.extranet.logilab.fr/cubicweb/cubes/person
https://forge.extranet.logilab.fr/cubicweb/cubes/comment
https://forge.extranet.logilab.fr/cubicweb/cubes/tag

Cubicweb Documentation, Release 3.38.10

Step 4: glue everything together in my cube’s schema

Put this code in cubicweb-sytweb/cubicweb_sytweb/schema.py:

from yams.buildobjs import RelationDefinition

class comments(RelationDefinition):
subject = 'Comment'
object = 'File'
a Comment can be on only one File
but a File can have several comments
cardinality = '1*'
composite = 'object'

class tags(RelationDefinition):
subject = 'Tag'
object = 'File'

class filed_under(RelationDefinition):
subject = 'File'
object = 'Folder'

class displayed_on(RelationDefinition):
subject = 'Person'
object = 'File'

This schema:

• allows to comment and tag on File entity type by adding the comments and tags relations. This should be all
we’ve to do for this feature since the related cubes provide ‘pluggable section’ which are automatically displayed
on the primary view of entity types supporting the relation.

• adds a situated_in relation definition so that image entities can be geolocalized.

• add a new relation displayed_on relation telling who can be seen on a picture.

This schema will probably have to evolve as time goes (for security handling at least), but since the possibility to let
a schema evolve is one of CubicWeb’s features (and goals), we won’t worry about it for now and see that later when
needed.

Step 5: creating the instance

Now that I have a schema, I want to create an instance. To do so using this new ‘sytweb’ cube, I run:

cubicweb-ctl create sytweb sytweb_instance

For simplicity you should use the sqlite database, it won’t require configuration.

Don’t forget to say “yes” to the question: Allow anonymous access ? [y/N]:

Hint: if you get an error while the database is initialized, you can avoid having to answer the questions again by running:

3.2. Building a photo gallery with CubicWeb 29

Cubicweb Documentation, Release 3.38.10

cubicweb-ctl db-create sytweb_instance

This will use your already configured instance and start directly from the create database step, thus skipping questions
asked by the ‘create’ command.

Once the instance and database are fully initialized, run

cubicweb-ctl pyramid -D sytweb_instance

to start the instance, check you can connect on it, etc. . . then go on http://localhost:8080 (or with another port if you’ve
modified it)

Security, testing and migration

This part will cover various topics:

• configuring security

• migrating existing instance

• writing some unit tests

Here is the read security model I want:

• folders, files, images and comments should have one of the following visibility:

– public, everyone can see it

– authenticated, only authenticated users can see it

– restricted, only a subset of authenticated users can see it

• managers (e.g. me) can see everything

• only authenticated users can see people

• everyone can see classifier entities, such as tag

Also:

• unless explicitly specified, the visibility of an image should be the same as

its parent folder * the visibility of a comment should be the same as the commented entity * If there is no parent entity,
the default visibility is authenticated.

Regarding write security, that’s much easier:

• anonymous can’t write anything

• authenticated users can only add comment

• managers will add the remaining stuff

Now, let’s implement that!

Proper security in CubicWeb is done at the schema level, so you don’t have to bother with it in views: users will only
see what they can see automatically.

30 Chapter 3. Tutorials

http://localhost:8080

Cubicweb Documentation, Release 3.38.10

Step 1: configuring security into the schema

In the schema, you can grant access according to:

• groups

• to some RQL expressions: users get access if the expression returns some results

To implement the read security defined earlier, groups are not enough, we’ll need some RQL expression. Here is the
idea:

• add a visibility attribute on Folder, File and Comment, which may be one of the value explained above

• add a may_be_read_by relation from Folder, File and Comment to users, which will define who can see the entity

• security propagation will be done in hooks

Note: What makes visibility an attribute and not a relation is that its object is a primitive type, here String.

Other builtin primitives are String, Int, BigInt, Float, Decimal, Boolean, Date, Datetime, Time, Interval, Byte and
Password and for more information read Entity type

So the first thing to do is to modify my cube’s schema.py to define those relations:

from yams.constraints import StaticVocabularyConstraint

class visibility(RelationDefinition):
subject = ('Folder', 'File', 'Comment')
object = 'String'
constraints = [StaticVocabularyConstraint(('public', 'authenticated',

'restricted', 'parent'))]
default = 'parent'
cardinality = '11' # required

class may_be_read_by(RelationDefinition):
__permissions__ = {

'read': ('managers', 'users'),
'add': ('managers',),
'delete': ('managers',),

}

subject = ('Folder', 'File', 'Comment',)
object = 'CWUser'

We can note the following points:

• we’ve added a new visibility attribute to Folder, File, Image and Comment using a RelationDefinition

• cardinality = ‘11’ means this attribute is required. This is usually hidden under the required argument given to
the String constructor, but we can rely on this here (same thing for StaticVocabularyConstraint, which is usually
hidden by the vocabulary argument)

• the parent possible value will be used for visibility propagation

• think to secure the may_be_read_by permissions, else any user can add/delete it by default, which somewhat
breaks our security model. . .

3.2. Building a photo gallery with CubicWeb 31

Cubicweb Documentation, Release 3.38.10

Now, we should be able to define security rules in the schema, based on these new attribute and relation. Here is the
code to add to schema.py:

from cubicweb.schema import ERQLExpression

VISIBILITY_PERMISSIONS = {
'read': ('managers',

ERQLExpression('X visibility "public"'),
ERQLExpression('X may_be_read_by U')),

'add': ('managers',),
'update': ('managers', 'owners',),
'delete': ('managers', 'owners'),

}
AUTH_ONLY_PERMISSIONS = {

'read': ('managers', 'users'),
'add': ('managers',),
'update': ('managers', 'owners',),
'delete': ('managers', 'owners'),

}
CLASSIFIERS_PERMISSIONS = {

'read': ('managers', 'users', 'guests'),
'add': ('managers',),
'update': ('managers', 'owners',),
'delete': ('managers', 'owners'),

}

from cubicweb_folder.schema import Folder
from cubicweb_file.schema import File
from cubicweb_comment.schema import Comment
from cubicweb_person.schema import Person
from cubicweb_tag.schema import Tag

Folder.__permissions__ = VISIBILITY_PERMISSIONS
File.__permissions__ = VISIBILITY_PERMISSIONS
Comment.__permissions__ = VISIBILITY_PERMISSIONS.copy()
Comment.__permissions__['add'] = ('managers', 'users',)
Person.__permissions__ = AUTH_ONLY_PERMISSIONS
Tag.__permissions__ = CLASSIFIERS_PERMISSIONS

What’s important in there:

• VISIBILITY_PERMISSIONS provides read access to managers group, if visibility attribute’s value is ‘public’,
or if user (designed by the ‘U’ variable in the expression) is linked to the entity (the ‘X’ variable) through the
may_be_read_by permission

• we modify permissions of the entity types we use by importing them and modifying their __permissions__
attribute

• notice the .copy(): we only want to modify ‘add’ permission for Comment, not for all entity types using VISI-
BILITY_PERMISSIONS!

• the remaining part of the security model is done using regular groups:

– users is the group to which all authenticated users will belong

– guests is the group of anonymous users

32 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Step 2: security propagation in hooks

To fullfill the requirements defined earlier, we have to implement:

Also, unless explicity specified, visibility of an image should be the same as its parent folder, as well as
visibility of a comment should be the same as the commented entity.

This kind of active rule will be done using CubicWeb’s hook system. Hooks are triggered on database events such as
addition of a new entity or relation.

The tricky part of the requirement is in unless explicitly specified, notably because when the entity is added, we don’t
know yet its ‘parent’ entity (e.g. Folder of an File, File commented by a Comment). To handle such things, CubicWeb
provides Operation, which allow to schedule things to do at commit time.

In our case we will:

• on entity creation, schedule an operation that will set default visibility

• when a parent relation is added, propagate parent’s visibility unless the child already has a visibility set

Here is the code in cube’s hooks.py:

from cubicweb.predicates import is_instance
from cubicweb.server import hook

class SetVisibilityOp(hook.DataOperationMixIn, hook.Operation):

def precommit_event(self):
for eid in self.get_data():

entity = self.cnx.entity_from_eid(eid)

if entity.visibility == 'parent':
entity.cw_set(visibility=u'authenticated')

class SetVisibilityHook(hook.Hook):
__regid__ = 'sytweb.setvisibility'
__select__ = hook.Hook.__select__ & is_instance('Folder', 'File', 'Comment')
events = ('after_add_entity',)

def __call__(self):
SetVisibilityOp.get_instance(self._cw).add_data(self.entity.eid)

class SetParentVisibilityHook(hook.Hook):
__regid__ = 'sytweb.setparentvisibility'
__select__ = hook.Hook.__select__ & hook.match_rtype('filed_under', 'comments')
events = ('after_add_relation',)

def __call__(self):
parent = self._cw.entity_from_eid(self.eidto)
child = self._cw.entity_from_eid(self.eidfrom)

if child.visibility == 'parent':
child.cw_set(visibility=parent.visibility)

3.2. Building a photo gallery with CubicWeb 33

Cubicweb Documentation, Release 3.38.10

Notice:

• hooks are application objects, hence have selectors that should match entity or relation types to which the hook
applies. To match a relation type, we use the hook specific match_rtype selector.

• usage of DataOperationMixIn: instead of adding an operation for each added entity, DataOperationMixIn allows
to create a single one and to store entity’s eids to be processed in the transaction data. This is a good pratice to
avoid heavy operations manipulation cost when creating a lot of entities in the same transaction.

• the precommit_event method of the operation will be called at transaction’s commit time.

• in a hook, self._cw is the repository session, not a web request as usually in views

• according to hook’s event, you have access to different attributes on the hook instance. Here:

– self.entity is the newly added entity on ‘after_add_entity’ events

– self.eidfrom / self.eidto are the eid of the subject / object entity on ‘after_add_relation’ events (you may also
get the relation type using self.rtype)

The parent visibility value is used to tell “propagate using parent security” because we want that attribute to be required,
so we can’t use None value else we’ll get an error before we get any chance to propagate. . .

Now, we also want to propagate the may_be_read_by relation. Fortunately, CubicWeb provides some base hook classes
for such things, so we only have to add the following code to hooks.py:

relations where the "parent" entity is the subject
S_RELS = set()
relations where the "parent" entity is the object
O_RELS = set(('filed_under', 'comments',))

class AddEntitySecurityPropagationHook(hook.PropagateRelationHook):
"""propagate permissions when new entity are added"""
__regid__ = 'sytweb.addentity_security_propagation'
__select__ = (hook.PropagateRelationHook.__select__

& hook.match_rtype_sets(S_RELS, O_RELS))
main_rtype = 'may_be_read_by'
subject_relations = S_RELS
object_relations = O_RELS

class AddPermissionSecurityPropagationHook(hook.PropagateRelationAddHook):
"""propagate permissions when new entity are added"""
__regid__ = 'sytweb.addperm_security_propagation'
__select__ = (hook.PropagateRelationAddHook.__select__

& hook.match_rtype('may_be_read_by',))
subject_relations = S_RELS
object_relations = O_RELS

class DelPermissionSecurityPropagationHook(hook.PropagateRelationDelHook):
__regid__ = 'sytweb.delperm_security_propagation'
__select__ = (hook.PropagateRelationDelHook.__select__

& hook.match_rtype('may_be_read_by',))
subject_relations = S_RELS
object_relations = O_RELS

34 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

• the AddEntitySecurityPropagationHook will propagate the relation when filed_under or comments relations are
added

– the S_RELS and O_RELS set as well as the match_rtype_sets selector are used here so that if my cube is
used by another one, it’ll be able to configure security propagation by simply adding relation to one of the
two sets.

• the two others will propagate permissions changes on parent entities to children entities

Step 3: testing our security

Security is tricky. Writing some tests for it is a very good idea. You should even write them first, as Test Driven
Development recommends!

Here is a small test case that will check the basis of our security model, in test/test_sytweb.py:

from cubicweb.devtools import testlib
from cubicweb import Binary

class SecurityTC(testlib.CubicWebTC):

def test_visibility_propagation(self):
with self.admin_access.repo_cnx() as cnx:

create a user for later security checks
toto = self.create_user(cnx, 'toto')

cnx.commit()

init some data using the default manager connection
folder = cnx.create_entity('Folder',

name=u'restricted',
visibility=u'restricted')

photo1 = cnx.create_entity('File',
data_name=u'photo1.jpg',
data=Binary(b'xxx'),
filed_under=folder)

cnx.commit()

visibility propagation
self.assertEquals(photo1.visibility, 'restricted')

unless explicitly specified
photo2 = cnx.create_entity('File',

data_name=u'photo2.jpg',
data=Binary(b'xxx'),
visibility=u'public',
filed_under=folder)

cnx.commit()

self.assertEquals(photo2.visibility, 'public')

(continues on next page)

3.2. Building a photo gallery with CubicWeb 35

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

with self.new_access('toto').repo_cnx() as cnx:
test security
self.assertEqual(1, len(cnx.execute('File X'))) # only the public one
self.assertEqual(0, len(cnx.execute('Folder X'))) # restricted...

with self.admin_access.repo_cnx() as cnx:
may_be_read_by propagation
folder = cnx.entity_from_eid(folder.eid)
folder.cw_set(may_be_read_by=toto)

cnx.commit()

with self.new_access('toto').repo_cnx() as cnx:
photo1 = cnx.entity_from_eid(photo1.eid)

self.failUnless(photo1.may_be_read_by)

test security with permissions
self.assertEquals(2, len(cnx.execute('File X'))) # now toto has access to␣

→˓photo2
self.assertEquals(1, len(cnx.execute('Folder X'))) # and to restricted folder

if __name__ == '__main__':
from unittest import main
main()

It’s not complete, but shows most things you’ll want to do in tests: adding some content, creating users and connecting
as them in the test, etc. . .

To run it type:

$ python3 test/test_sytweb.py
==
-> creating tables [====================]
-> inserting default user and default groups.
-> storing the schema in the database [====================]
-> database for instance data initialized.
.
--
Ran 1 test in 22.547s

OK

The first execution is taking time, since it creates a sqlite database for the test instance. The second one will be much
quicker:

$ python3 test/test_sytweb.py
==
.
--
Ran 1 test in 2.662s

(continues on next page)

36 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

OK

If you do some changes in your schema, you’ll have to force regeneration of that database. You do that by removing
the tmpdb files before running the test:

$ rm data/database/tmpdb*

Step 4: writing the migration script and migrating the instance

Prior to those changes, I created an instance, fed it with some data, so I don’t want to create a new one, but to migrate
the existing one. Let’s see how to do that.

Migration commands should be put in the cube’s migration directory, in a file named <X.Y.Z>_Any.py (‘Any’ being
there mostly for historical reasons and ‘<X.Y.Z>’ being the version number of the cube we are going to release.)

Here I’ll create a migration/0.2.0_Any.py file containing the following instructions:

add_relation_type('may_be_read_by')
add_relation_type('visibility')
sync_schema_props_perms()

Then I update the version number in the cube’s __pkginfo__.py to 0.2.0. And that’s it! Those instructions will:

• update the instance’s schema by adding our two new relations and update the underlying database tables accord-
ingly (the first two instructions)

• update schema’s permissions definition (the last instruction)

To migrate my instance I simply type:

cubicweb-ctl upgrade sytweb_instance

You’ll then be asked some questions to do the migration step by step. You should say YES when it asks if a backup of
your database should be done, so you can get back to initial state if anything goes wrong. . .

Storing images on the file-system

Step 1: configuring the BytesFileSystem storage

To avoid cluttering my database, and to ease file manipulation, I don’t want them to be stored in the database. I want to
be able create File entities for some files on the server file system, where those file will be accessed to get entities data.
To do so I’ve to set a custom BytesFileSystemStorage storage for the File ‘data’ attribute, which hold the actual
file’s content.

Since the function to register a custom storage needs to have a repository instance as first argument, we’ve to call it in
a server startup hook. So I added in cubicweb_sytweb/hooks.py :

from os import makedirs
from os.path import join, exists

from cubicweb.server import hook
from cubicweb.server.sources import storages

(continues on next page)

3.2. Building a photo gallery with CubicWeb 37

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

class ServerStartupHook(hook.Hook):
__regid__ = 'sytweb.serverstartup'
events = ('server_startup', 'server_maintenance')

def __call__(self):
bfssdir = join(self.repo.config.appdatahome, 'bfss')
if not exists(bfssdir):

makedirs(bfssdir)
print('created', bfssdir)

storage = storages.BytesFileSystemStorage(bfssdir)
storages.set_attribute_storage(self.repo, 'File', 'data', storage)

Note:
• how we built the hook’s registry identifier (__regid__): you can introduce ‘namespaces’ by using there python

module like naming identifiers. This is especially important for hooks where you usually want a new custom
hook, not overriding / specializing an existant one, but the concept may be applied to any application objects

• we catch two events here: “server_startup” and “server_maintenance”. The first is called on regular repository
startup (eg, as a server), the other for maintenance task such as shell or upgrade. In both cases, we need to have
the storage set, else we’ll be in trouble. . .

• the path given to the storage is the place where file added through the ui (or in the database before migration)
will be located

• beware that by doing this, you can’t anymore write queries that will try to restrict on File data attribute. Hopefuly
we don’t do that usually on file’s content or more generally on attributes for the Bytes type

Now, if you’ve already added some photos through the web ui, you’ll have to migrate existing data so file’s content will
be stored on the file-system instead of the database. There is a migration command to do so, let’s run it in the cubicweb
shell (in real life, you would have to put it in a migration script as we have seen last time):

$ cubicweb-ctl shell sytweb_instance
entering the migration python shell
just type migration commands or arbitrary python code and type ENTER to execute it
type "exit" or Ctrl-D to quit the shell and resume operation
>>> storage_changed('File', 'data')
[========================]

That’s it. Now, files added through the web ui will have their content stored on the file-system, and you’ll also be able
to import files from the file-system as explained in the next part.

38 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Step 2: importing some data into the instance

Hey, we start to have some nice features, let us give a try to this new web site. For instance if I have a ‘pho-
tos/201005WePyrenees’ containing pictures for a particular event, I can import it to my web site by typing

$ cubicweb-ctl fsimport -F sytweb_instance photos/201005WePyrenees/
** importing directory /home/syt/photos/201005WePyrenees
importing IMG_8314.JPG
importing IMG_8274.JPG
importing IMG_8286.JPG
importing IMG_8308.JPG
importing IMG_8304.JPG

Note: The -F option means that folders should be mapped, hence my photos will be linked to a Folder entity corre-
sponding to the file-system folder.

Let’s take a look at the web ui:

Nothing different, I can’t see the new folder. . . But remember our security model! By default, files are only accessible
to authenticated users, and I’m looking at the site as anonymous, e.g. not authenticated. If I login, I can now see:

3.2. Building a photo gallery with CubicWeb 39

Cubicweb Documentation, Release 3.38.10

Yeah, it’s there! You will notice that I can see some entities as well as folders and images the anonymous user can’t. It
just works everywhere in the ui since it’s handled at the repository level, thanks to our security model.

Now if I click on the recently inserted folder, I can see

40 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Great! There is even my pictures in the folder. I can know give to this folder a nicer name (provided I don’t intend to
import from it anymore, else already imported photos will be reimported), change permissions, title for some pictures,
etc. . . Having a good content is much more difficult than having a good web site ;)

Conclusion

We started to see here an advanced feature of our repository: the ability to store some parts of our data-model into a
custom storage, outside the database. There is currently only the BytesFileSystemStorage available, but you can
expect to see more coming in a near future (or write your own!).

Also, we can know start to feed our web-site with some nice pictures! The site isn’t perfect (far from it actually) but
it’s usable, and we can now start using it and improve it on the way. The Incremental Cubic Way :)

3.2. Building a photo gallery with CubicWeb 41

Cubicweb Documentation, Release 3.38.10

Let’s make it more user friendly

Step 1: let’s improve site’s usability for our visitors

The first thing I’ve noticed is that people to whom I send links to photos with some login/password authentication get
lost, because they don’t grasp they have to login by clicking on the ‘authenticate’ link. That’s much probably because
they only get a 404 when trying to access an unauthorized folder, and the site doesn’t make clear that 1. you’re not
authenticated, 2. you could get more content by authenticating yourself.

So, to improve this situation, I decided that I should:

• make a login box appears for anonymous, so they see at a first glance a place to put the login / password infor-
mation I provided

• customize the 404 page, proposing to login to anonymous.

Here is the code, samples from my cube’s views.py file:

from cubicweb import _
from cubicweb.web import component
from cubicweb.web.views import error
from cubicweb.predicates import anonymous_user

class FourOhFour(error.FourOhFour):
__select__ = error.FourOhFour.__select__ & anonymous_user()

def call(self):
self.w(u"<h1>%s</h1>" % self._cw._('this resource does not exist'))
self.w(u"<p>%s</p>" % self._cw._('have you tried to login?'))

class LoginBox(component.CtxComponent):
"""display a box containing links to all startup views"""
__regid__ = 'sytweb.loginbox'
__select__ = component.CtxComponent.__select__ & anonymous_user()

title = _('Authenticate yourself')
order = 70

def render_body(self, w):
cw = self._cw
form = cw.vreg['forms'].select('logform', cw)
form.render(w=w, table_class='', display_progress_div=False)

The first class provides a new specific implementation of the default page you get on 404 error, to display an adapted
message to anonymous user.

Note: Thanks to the selection mecanism, it will be selected for anoymous user, since the additional anonymous_user()
selector gives it a higher score than the default, and not for authenticated since this selector will return 0 in such case
(hence the object won’t be selectable)

The second class defines a simple box, that will be displayed by default with boxes in the left column, thanks to default
component.CtxComponent selector. The HTML is written to match default CubicWeb boxes style. The code fetch
the actual login form and render it.

42 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Fig. 1: The login box and the custom 404 page for an anonymous visitor (translated in french)

Step 2: providing a custom index page

Another thing we can easily do to improve the site is. . . A nicer index page (e.g. the first page you get when accessing
the web site)! The default one is quite intimidating (that should change in a near future). I will provide a much simpler
index page that simply list available folders (e.g. photo albums in that site).

Here is the code, samples from my cube’s views.py file:

from cubicweb.web.views import startup

class IndexView(startup.IndexView):
def call(self, **kwargs):

self.w(u'<div>\n')
if self._cw.cnx.session.anonymous_session:

self.w(u'<h4>%s</h4>\n' % self._cw._('Public Albums'))
else:

self.w(u'<h4>%s</h4>\n' % self._cw._('Albums for %s') % self._cw.user.login)
self._cw.vreg['views'].select('tree', self._cw).render(w=self.w)
self.w(u'</div>\n')

def registration_callback(vreg):
vreg.register_all(globals().values(), __name__, (IndexView,))
vreg.register_and_replace(IndexView, startup.IndexView)

As you can see, we override the default index view found in cubicweb.web.views.startup, getting back nothing but its
identifier and selector since we override the top level view’s call method.

Note: in that case, we want our index view to replace the existing one. To do so we’ve to implements the registra-
tion_callback function, in which we tell to register everything in the module but our IndexView, then we register it
instead of the former index view.

Also, we added a title that tries to make it more evident that the visitor is authenticated, or not. Hopefully people will
get it now!

3.2. Building a photo gallery with CubicWeb 43

Cubicweb Documentation, Release 3.38.10

Fig. 2: The default index page

Fig. 3: Our simpler, less intimidating, index page (still translated in french)

44 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Step 3: more navigation improvements

There are still a few problems I want to solve. . .

• Images in a folder are displayed in a somewhat random order. I would like to have them ordered by file’s name
(which will usually, inside a given folder, also result ordering photo by their date and time)

• When clicking a photo from an album view, you’ve to get back to the gallery view to go to the next photo. This
is pretty annoying. . .

• Also, when viewing an image, there is no clue about the folder to which this image belongs to.

I will first try to explain the ordering problem. By default, when accessing related entities by using the ORM’s API,
you should get them ordered according to the target’s class cw_fetch_order. If we take a look at the file cube’schema,
we can see:

class File(AnyEntity):
"""customized class for File entities"""
__regid__ = 'File'
fetch_attrs, cw_fetch_order = fetch_config(['data_name', 'title'])

By default, fetch_config will return a cw_fetch_order method that will order on the first attribute in the list. So, we
could expect to get files ordered by their name. But we don’t. What’s up doc?

The problem is that files are related to folder using the filed_under relation. And that relation is ambiguous, eg it can
lead to File entities, but also to Folder entities. In such case, since both entity types doesn’t share the attribute on which
we want to sort, we’ll get linked entities sorted on a common attribute (usually modification_date).

To fix this, we’ve to help the ORM. We’ll do this in the method from the ITree folder’s adapter, used in the folder’s
primary view to display the folder’s content. Here’s the code, that I’ve put in our cube’s entities.py file, since it’s
more logical stuff than view stuff:

from cubicweb_folder import entities as folder

class FolderITreeAdapter(folder.FolderITreeAdapter):

def different_type_children(self, entities=True):
rql = self.entity.cw_related_rql(self.tree_relation,

self.parent_role, ('File',))
rset = self._cw.execute(rql, {'x': self.entity.eid})

if entities:
return list(rset.entities())

return rset

def registration_callback(vreg):
vreg.register_and_replace(FolderITreeAdapter, folder.FolderITreeAdapter)

As you can see, we simple inherit from the adapter defined in the folder cube, then we override the differ-
ent_type_children method to give a clue to the ORM’s cw_related_rql method, that is responsible to generate the
rql to get entities related to the folder by the filed_under relation (the value of the tree_relation attribute). The clue is
that we only want to consider the File target entity type. By doing this, we remove the ambiguity and get back a RQL
query that correctly order files by their data_name attribute.

3.2. Building a photo gallery with CubicWeb 45

Cubicweb Documentation, Release 3.38.10

Note:
• As seen earlier, we want to replace the folder’s ITree adapter by our implementation, hence the custom registra-

tion_callback method.

Ouf. That one was tricky. . .

Now the easier parts. Let’s start by adding some links on the file’s primary view to see the previous / next image in the
same folder. CubicWeb’s provide a component that do exactly that. To make it appears, one have to be adaptable to the
IPrevNext interface. Here is the related code sample, extracted from our cube’s views.py file:

from cubicweb.predicates import is_instance
from cubicweb.web.views import navigation

class FileIPrevNextAdapter(navigation.IPrevNextAdapter):
__select__ = is_instance('File')

def previous_entity(self):
rset = self._cw.execute('File F ORDERBY FDN DESC LIMIT 1 WHERE '

'X filed_under FOLDER, F filed_under FOLDER, '
'F data_name FDN, X data_name > FDN, X eid %(x)s',
{'x': self.entity.eid})

if rset:
return rset.get_entity(0, 0)

def next_entity(self):
rset = self._cw.execute('File F ORDERBY FDN ASC LIMIT 1 WHERE '

'X filed_under FOLDER, F filed_under FOLDER, '
'F data_name FDN, X data_name < FDN, X eid %(x)s',
{'x': self.entity.eid})

if rset:
return rset.get_entity(0, 0)

The IPrevNext interface implemented by the adapter simply consist in the previous_entity / next_entity methods, that
should respectivly return the previous / next entity or None. We make an RQL query to get files in the same folder,
ordered similarly (eg by their data_name attribute). We set ascendant/descendant ordering and a strict comparison with
current file’s name (the “X” variable representing the current file).

Notice that this query supposes we wont have two files of the same name in the same folder, else things may go wrong.
Fixing this is out of the scope of this tutorial. And as I would like to have at some point a smarter, context sensitive
previous/next entity, I’ll probably never fix this query (though if I had to, I would probably choosing to add a constraint
in the schema so that we can’t add two files of the same name in a folder).

One more thing: by default, the component will be displayed below the content zone (the one with the white back-
ground). You can change this in the site’s properties through the ui, but you can also change the default value in the
code by modifying the context attribute of the component FileIPrevNextAdapter:

navigation.NextPrevNavigationComponent.context = 'navcontentbottom'

Note: context may be one of ‘navtop’, ‘navbottom’, ‘navcontenttop’ or ‘navcontentbottom’; the first two being outside
the main content zone, the two others inside it.

46 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Fig. 4: The previous/next entity component, at the bottom of the main content zone.

Now, the only remaining stuff in my todo list is to see the file’s folder. I’ll use the standard breadcrumb component to
do so. Similarly as what we’ve seen before, this component is controled by the IBreadCrumbs interface, so we’ll have
to provide a custom adapter for File entity, telling the a file’s parent entity is its folder:

from cubicweb.web.views import ibreadcrumbs

class FileIBreadCrumbsAdapter(ibreadcrumbs.IBreadCrumbsAdapter):
__select__ = is_instance('File')

def parent_entity(self):
if self.entity.filed_under:

return self.entity.filed_under[0]

In that case, we simply use attribute notation provided by the ORM to get the folder in which the current file (e.g.
self.entity) is located.

Note: The IBreadCrumbs interface is a breadcrumbs method, but the default IBreadCrumbsAdapter provides a
default implementation for it that will look at the value returned by its parent_entity method. It also provides a default
implementation for this method for entities adapting to the ITree interface, but as our File doesn’t, we’ve to provide a
custom adapter.

Fig. 5: The breadcrumb component when on a file entity, now displaying parent folder.

3.2. Building a photo gallery with CubicWeb 47

Cubicweb Documentation, Release 3.38.10

Step 4: preparing the release and migrating the instance

Now that greatly enhanced our cube, it’s time to release it to upgrade production site. I’ll probably detail that process
later, but I currently simply transfer the new code to the server running the web site.

However, I’ve still today some step to respect to get things done properly. . .

First, as I’ve added some translatable string, I’ve to run:

$ cubicweb-ctl i18ncube sytweb

To update the cube’s gettext catalogs (the ‘.po’ files under the cube’s i18n directory). Once the above command is
executed, I’ll then update translations.

To see if everything is ok on my test instance, I do:

$ cubicweb-ctl i18ninstance sytweb_instance
$ cubicweb-ctl pyramid -D sytweb_instance

The first command compile i18n catalogs (e.g. generates ‘.mo’ files) for my test instance. The second command start
it in debug mode, so I can open my browser and navigate through the web site to see if everything is ok. . .

Note: In the ‘cubicweb-ctl i18ncube’ command, sytweb refers to the cube, while in the two other, it refers to the
instance (if you can’t see the difference, reread CubicWeb’s concept chapter!).

Once I’ve checked it’s ok, I simply have to bump the version number in the __pkginfo__module to trigger a migration
once I’ll have updated the code on the production site. I can check then check the migration is also going fine, by first
restoring a dump from the production site, then upgrading my test instance.

To generate a dump from the production site:

$ cubicweb-ctl db-dump sytweb_instance
if it's postgresql
pg_dump -Fc --username=syt --no-owner --file /home/syt/etc/cubicweb.d/sytweb/backup/
→˓tmpYIN0YI/system sytweb
if it's sqlite
gzip -c /home/psycojoker/etc/cubicweb.d/sytweb_instance/sytweb_instance.sqlite
-> backup file /home/syt/etc/cubicweb.d/sytweb/backup/sytweb-2010-07-13_10-22-40.tar.gz

I can now get back the dump file (sytweb-2010-07-13_10-22-40.tar.gz) to my test machine (using scp for in-
stance) to restore it and start migration:

$ cubicweb-ctl db-restore sytweb_instance /path/path/to/sytweb-2010-07-13_10-22-40.tar.gz
$ cubicweb-ctl upgrade sytweb_instance

You might have to answer some questions, as we’ve seen in a previous part.

Now that everything is tested, I can transfer the new code to the production server, pip install CubicWeb and its depen-
dencies, and eventually upgrade the production instance.

48 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Building my photos web site with CubicWeb part V: let’s make it even more user friendly

Step 1: tired of the default look?

OK. . . Now our site has its most desired features. But. . . I would like to make it look somewhat like my website. It is
not www.cubicweb.org after all. Let’s tackle this first!

The first thing we can to is to change the logo. There are various way to achieve this. The easiest way is to put a logo.
png file into the cube’s data directory. As data files are looked at according to cubes order (CubicWeb resources
coming last), that file will be selected instead of CubicWeb’s one.

Note: As the location for static resources are cached, you’ll have to restart your instance for this to be taken into
account.

Though there are some cases where you don’t want to use a logo.png file. For instance if it’s a JPEG file. You can
still change the logo by defining in the cube’s uiprops.py file:

LOGO = data('logo.jpg')

Note: If the file uiprops.py doesn’t exist in your cube, simply create it.

The uiprops machinery is used to define some static file resources, such as the logo, default Javascript / CSS files, as
well as CSS properties (we’ll see that later).

Note: This file is imported specifically by CubicWeb, with a predefined name space, containing for instance the data
function, telling the file is somewhere in a cube or CubicWeb’s data directory.

One side effect of this is that it can’t be imported as a regular python module.

The nice thing is that in debug mode, change to a uiprops.py file are detected and then automatically reloaded.

Now, as it’s a photos web-site, I would like to have a photo of mine as background. . . After some trials I won’t detail
here, I’ve found a working recipe explained here. All I’ve to do is to override some stuff of the default CubicWeb user
interface to apply it as explained.

The first thing to to get the tag as first element after the <body> tag. If you know a way to avoid this by
simply specifying the image in the CSS, tell me! The easiest way to do so is to override the HTMLPageHeader view,
since that’s the one that is directly called once the <body> has been written. How did I find this? By looking in the
cubiweb.web.views.basetemplates module, since I know that global page layouts sits there. I could also have
grep the “body” tag in cubicweb.web.views. . . Finding this was the hardest part. Now all I need is to customize it
to write that img tag, as below in views.py:

from cubicweb.web.views import basetemplates

class HTMLPageHeader(basetemplates.HTMLPageHeader):
override this since it's the easier way to have our bg image
as the first element following <body>
def call(self, **kwargs):

self.w(u''
% self._cw.datadir_url)

super(HTMLPageHeader, self).call(**kwargs)
(continues on next page)

3.2. Building a photo gallery with CubicWeb 49

http://webdesign.about.com/od/css3/f/blfaqbgsize.htm

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

def registration_callback(vreg):
vreg.register_all(globals().values(), __name__, (HTMLPageHeader))
vreg.register_and_replace(HTMLPageHeader, basetemplates.HTMLPageHeader)

As you may have guessed, my background image is in a background.jpg file in the cube’s data directory, but there
are still some things to explain to newcomers here:

• The call() method is there the main access point of the view. It’s called by the view’s render() method. It is
not the only access point for a view, but this will be detailed later.

• Calling self.w writes something to the output stream. Except for binary views (which do not generate text), it
must be passed an Unicode string.

• The proper way to get a file in data directory is to use the datadir_url attribute of the incoming request (e.g.
self._cw).

I won’t explain again the registration_callback() stuff, you should understand it now! If not, go back to previous
post in the series :)

Fine. Now all I’ve to do is to add a bit of CSS to get it to behave nicely (which is not the case at all for now). I’ll put
all this in a cubes.sytweb.css file, stored as usual in our data directory:

/* fixed full screen background image
* as explained on http://webdesign.about.com/od/css3/f/blfaqbgsize.htm
*
* syt update: set z-index=0 on the img instead of z-index=1 on div#page & co to
* avoid pb with the user actions menu
*/
img#bg-image {

position: fixed;
top: 0;
left: 0;
width: 100%;
height: 100%;
z-index: 0;

}

div#page, table#header, div#footer {
background: transparent;
position: relative;

}

/* add some space around the logo
*/
img#logo {

padding: 5px 15px 0px 15px;
}

/* more dark font for metadata to have a chance to see them with the background
* image
*/
div.metadata {

(continues on next page)

50 Chapter 3. Tutorials

part04_ui-base.rst
part04_ui-base.rst

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

color: black;
}

You can see here stuff explained in the cited page, with only a slight modification explained in the comments, plus some
additional rules to make things somewhat cleaner:

• a bit of padding around the logo

• darker metadata which appears by default below the content (the white frame in the page)

To get this CSS file used everywhere in the site, I have to modify the uiprops.py file introduced above:

STYLESHEETS = sheet['STYLESHEETS'] + [data('cubes.sytweb.css')]

Note: sheet is another predefined variable containing values defined by already process :file:`uiprops.py` file, notably
the CubicWeb’s one.

Here we simply want our CSS in addition to CubicWeb’s base CSS files, so we redefine the STYLESHEETS variable
to existing CSS (accessed through the sheet variable) with our one added. I could also have done:

sheet['STYLESHEETS'].append(data('cubes.sytweb.css'))

But this is less interesting since we don’t see the overriding mechanism. . .

At this point, the site should start looking good, the background image being resized to fit the screen.

3.2. Building a photo gallery with CubicWeb 51

Cubicweb Documentation, Release 3.38.10

The final touch: let’s customize CubicWeb’s CSS to get less orange. . . By simply adding

contextualBoxTitleBg = incontextBoxTitleBg = '#AAAAAA'

and reloading the page we’ve just seen, we know have a nice greyed box instead of the orange one:

52 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

This is because CubicWeb’s CSS include some variables which are expanded by values defined in uiprops.py file. In
our case we controlled the properties of the CSS background property of boxes with CSS class contextualBoxTitleBg
and incontextBoxTitleBg.

Step 2: configuring boxes

Boxes present to the user some ways to use the application. Let’s first do a few user interface tweaks in our views.py
file:

from cubicweb.predicates import none_rset
from cubicweb.web.views import bookmark
from cubicweb_zone import views as zone
from cubicweb_tag import views as tag

change bookmarks box selector so it's only displayed on startup views
bookmark.BookmarksBox.__select__ = bookmark.BookmarksBox.__select__ & none_rset()
move zone box to the left instead of in the context frame and tweak its order
zone.ZoneBox.context = 'left'
zone.ZoneBox.order = 100
move tags box to the left instead of in the context frame and tweak its order
tag.TagsBox.context = 'left'
tag.TagsBox.order = 102
hide similarity box, not interested
tag.SimilarityBox.visible = False

The idea is to move all boxes in the left column, so we get more space for the photos. Now, serious things: I want a
box similar to the tags box but to handle the Person displayed_on File relation. We can do this simply by adding a
AjaxEditRelationCtxComponent subclass to our views, as below:

from cubicweb import _
from logilab.common.decorators import monkeypatch
from cubicweb import ValidationError

(continues on next page)

3.2. Building a photo gallery with CubicWeb 53

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

from cubicweb.web.views import uicfg, component
from cubicweb.web.views import basecontrollers

hide displayed_on relation using uicfg since it will be displayed by the box below
uicfg.primaryview_section.tag_object_of(('*', 'displayed_on', '*'), 'hidden')

class PersonBox(component.AjaxEditRelationCtxComponent):
__regid__ = 'sytweb.displayed-on-box'
box position
order = 101
context = 'left'
define relation to be handled
rtype = 'displayed_on'
role = 'object'
target_etype = 'Person'
messages
added_msg = _('person has been added')
removed_msg = _('person has been removed')
bind to js_* methods of the json controller
fname_vocabulary = 'unrelated_persons'
fname_validate = 'link_to_person'
fname_remove = 'unlink_person'

@monkeypatch(basecontrollers.JSonController)
@basecontrollers.jsonize
def js_unrelated_persons(self, eid):

"""return tag unrelated to an entity"""
rql = "Any F + ' ' + S WHERE P surname S, P firstname F, X eid %(x)s, NOT P␣

→˓displayed_on X"
return [name for (name,) in self._cw.execute(rql, {'x' : eid})]

@monkeypatch(basecontrollers.JSonController)
def js_link_to_person(self, eid, people):

req = self._cw
for name in people:

name = name.strip().title()
if not name:

continue
try:

firstname, surname = name.split(None, 1)
except:

raise ValidationError(eid, {('displayed_on', 'object'): 'provide <first name>
→˓ <surname>'})

rset = req.execute('Person P WHERE '
'P firstname %(firstname)s, P surname %(surname)s',
locals())

if rset:
person = rset.get_entity(0, 0)

(continues on next page)

54 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

else:
person = req.create_entity('Person', firstname=firstname,

surname=surname)
req.execute('SET P displayed_on X WHERE '

'P eid %(p)s, X eid %(x)s, NOT P displayed_on X',
{'p': person.eid, 'x' : eid})

@monkeypatch(basecontrollers.JSonController)
def js_unlink_person(self, eid, personeid):

self._cw.execute('DELETE P displayed_on X WHERE P eid %(p)s, X eid %(x)s',
{'p': personeid, 'x': eid})

You basically subclass to configure with some class attributes. The fname_* attributes give the name of methods that
should be defined on the json control to make the AJAX part of the widget work: one to get the vocabulary, one to add a
relation and another to delete a relation. These methods must start by a js_ prefix and are added to the controller using
the @monkeypatch decorator. In my case, the most complicated method is the one which adds a relation, since it tries
to see if the person already exists, and else automatically create it, assuming the user entered “firstname surname”.

Let’s see how it looks like on a file primary view:

3.2. Building a photo gallery with CubicWeb 55

Cubicweb Documentation, Release 3.38.10

Great, it’s now as easy for me to link my pictures to people than to tag them. Also, visitors get a consistent display of
these two pieces of information.

Note: The ui component system has been refactored in CubicWeb 3.10, which also introduced the
AjaxEditRelationCtxComponent class.

56 Chapter 3. Tutorials

http://www.cubicweb.org/blogentry/1330518

Cubicweb Documentation, Release 3.38.10

Step 3: configuring facets

The last feature we’ll add today is facet configuration. If you access to the ‘/file’ url, you’ll see a set of ‘facets’ appearing
in the left column. Facets provide an intuitive way to build a query incrementally, by proposing to the user various way
to restrict the result set. For instance CubicWeb proposes a facet to restrict based on who created an entity; the tag cube
proposes a facet to restrict based on tags; the zoe cube a facet to restrict based on geographical location, and so on. In
that gist, I want to propose a facet to restrict based on the people displayed on the picture. To do so, there are various
classes in the cubicweb.web.facet module which simply have to be configured using class attributes as we’ve done
for the box. In our case, we’ll define a subclass of RelationFacet.

Note: Since that’s ui stuff, we’ll continue to add code below to our views.py file. Though we begin to have a lot of
various code their, so it’s may be a good time to split our views module into submodules of a view package. In our case
of a simple application (glue) cube, we could start using for instance the layout below:

views/__init__.py # uicfg configuration, facets
views/layout.py # header/footer/background stuff
views/components.py # boxes, adapters
views/pages.py # index view, 404 view

from cubicweb.web import facet

class DisplayedOnFacet(facet.RelationFacet):
__regid__ = 'displayed_on-facet'
relation to be displayed
rtype = 'displayed_on'
role = 'object'
view to use to display persons
label_vid = 'combobox'

Let’s say we also want to filter according to the visibility attribute. This is even simpler as we just have to derive from
the AttributeFacet class:

class VisibilityFacet(facet.AttributeFacet):
__regid__ = 'visibility-facet'
rtype = 'visibility'

Now if I search for some pictures on my site, I get the following facets available:

3.2. Building a photo gallery with CubicWeb 57

Cubicweb Documentation, Release 3.38.10

Note: By default a facet must be applyable to every entity in the result set and provide at leat two elements of
vocabulary to be displayed (for instance you won’t see the created_by facet if the same user has created all entities).
This may explain why you don’t see yours. . .

Conclusion

We started to see the power behind the infrastructure provided by the framework, both on the pure ui (CSS, Javascript)
side and on the Python side (high level generic classes for components, including boxes and facets). We now have, with
a few lines of code, a full-featured web site with a personalized look.

Of course we’ll probably want more as time goes, but we can now concentrate on making good pictures, publishing
albums and sharing them with friends. . .

58 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

3.3 Use Windmill with CubicWeb

Windmill implements cross browser testing, in-browser recording and playback, and functionality for fast accurate
debugging and test environment integration.

Online features list is available.

3.3.1 Installation

Windmill

You have to install Windmill manually for now. If you’re using Debian, there is no binary package (yet).

The simplest solution is to use a setuptools/pip command (for a clean environment, take a look to the virtualenv project
as well):

$ pip install windmill
$ curl -O http://github.com/windmill/windmill/tarball/master

However, the Windmill project doesn’t release frequently. Our recommandation is to used the last snapshot of the Git
repository:

$ git clone git://github.com/windmill/windmill.git HEAD
$ cd windmill
$ python3 setup.py develop

Install instructions are available.

Be sure to have the windmill module in your PYTHONPATH afterwards:

$ python3 -c "import windmill"

X dummy

In order to reduce unecessary system load from your test machines, It’s recommended to use X dummy server for testing
the Unix web clients, you need a dummy video X driver (as xserver-xorg-video-dummy package in Debian) coupled
with a light X server as Xvfb.

The dummy driver is a special driver available with the XFree86 DDX. To use the dummy driver, simply
substitue it for your normal card driver in the Device section of your xorg.conf configuration file. For
example, if you normally uses an ati driver, then you will have a Device section with Driver “ati” to let
the X server know that you want it to load and use the ati driver; however, for these conformance tests,
you would change that line to Driver “dummy” and remove any other ati specific options from the Device
section.

From: http://www.x.org/wiki/XorgTesting

Then, you can run the X server with the following command

$ /usr/bin/X11/Xvfb :1 -ac -screen 0 1280x1024x8 -fbdir /tmp

3.3. Use Windmill with CubicWeb 59

http://www.getwindmill.com/
http://www.getwindmill.com/features
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=579109
http://pypi.python.org/pypi/virtualenv
http://wiki.github.com/windmill/windmill/installing
http://en.wikipedia.org/wiki/Xvfb

Cubicweb Documentation, Release 3.38.10

3.3.2 Windmill usage

Record your use case

• start your instance manually

• start Windmill with url site as last argument (read Usage or use ‘-h’ option to find required command line argu-
ments)

• use the record button

• click on save to obtain python code of your use case

• copy the content to a new file in a windmill directory

If you are using firefox as client, consider the “firebug” option.

If you have a running instance, you can refine the test by the loadtest windmill option:

$ windmill -m firebug loadtest=<test_file.py> <instance url>

Or use the internal windmill shell to explore available commands:

$ windmill -m firebug shell <instance url>

And enter python commands:

>>> load_test(<your test file>)
>>> run_test(<your test file>)

3.3.3 Integrate Windmill tests into CubicWeb

Set environment

You have to create a new unit test file and a windmill directory and copy all your windmill use case into it.

test_windmill.py

Run all scenarii found in windmill directory
from cubicweb.devtools.cwwindmill import (CubicWebWindmillUseCase,

unittest_main)

if __name__ == '__main__':
unittest_main()

Run your tests

You can easily run your windmill test suite through pytest or unittest. You have to copy a test_windmill.py file from
web.test.

To run your test series:

$ pytest test/test_windmill.py

60 Chapter 3. Tutorials

http://www.getwindmill.com/
http://wiki.github.com/windmill/windmill/running-tests

Cubicweb Documentation, Release 3.38.10

By default, CubicWeb will use firefox as the default browser and will try to run test instance server on localhost. In the
general case, You’ve no need to change anything.

Check cubicweb.devtools.cwwindmill.CubicWebWindmillUseCase for Windmill configuration. You can edit
windmill settings with following class attributes:

• browser identification string (firefox|ie|safari|chrome) (firefox by default)

• test_dir testing file path or directory (windmill directory under your unit case file by default)

• edit_test load and edit test for debugging (False by default)

Examples:

browser = 'firefox'
test_dir = osp.join(__file__, 'windmill')
edit_test = False

If you want to change cubicweb test server parameters, you can check class variables from CubicWebServerConfig
or inherit it with overriding the configcls attribute in CubicWebServerTC

.. sourcecode:: python

class OtherCubicWebServerConfig(CubicWebServerConfig): port = 9999

class NewCubicWebServerTC(CubicWebServerTC): configcls = OtherCubicWebServerConfig

For instance, CubicWeb framework windmill tests can be manually run by:

$ pytest web/test/test_windmill.py

Edit your tests

You can toggle the edit_test variable to enable test edition.

But if you are using pytest as test runner, use the -i option directly. The test series will be loaded and you can run
assertions step-by-step:

$ pytest -i test/test_windmill.py

In this case, the firebug extension will be loaded automatically for you.

Afterwards, don’t forget to save your edited test into the right file (no autosave feature).

Best practises

Don’t run another instance on the same port. You risk to silence some regressions (test runner will automatically fail
in further versions).

Start your use case by using an assert on the expected primary url page. Otherwise all your tests could fail without
clear explanation of the used navigation.

In the same location of the test_windmill.py, create a windmill/ with your windmill recorded use cases.

3.3. Use Windmill with CubicWeb 61

Cubicweb Documentation, Release 3.38.10

3.3.4 Caveats

File Upload

Windmill can’t do file uploads. This is a limitation of browser Javascript support / sandboxing, not of Windmill per se.
It would be nice if there were some command that would prime the Windmill HTTP proxy to add a particular file to
the next HTTP request that comes through, so that uploads could at least be faked.

3.3.5 Preferences

A .windmill/prefs.py could be used to redefine default configuration values.

For managing browser extensions, read advanced topic chapter.

More configuration examples could be seen in windmill/conf/global_settings.py as template.

3.4 Writing text reports with RestructuredText

CubicWeb offers several text formats for the RichString type used in schemas, including restructuredtext.

Three additional restructuredtext roles are defined by CubicWeb:

cubicweb.ext.rest.eid_reference_role(role, rawtext, text, lineno, inliner, options={}, content=[])

cubicweb.ext.rest.rql_role(role, rawtext, text, lineno, inliner, options={}, content=[])
:rql:`<rql-expr>` or :rql:`<rql-expr>:<vid>`

Example: :rql:`Any X,Y WHERE X is CWUser, X login Y:table`

Replace the directive with the output of applying the view to the resultset returned by the query.

“X eid %(userid)s” can be used in the RQL query for this query will be executed with the argument {‘userid’:
_cw.user.eid}.

cubicweb.ext.rest.bookmark_role(role, rawtext, text, lineno, inliner, options={}, content=[])
:bookmark:`<bookmark-eid>` or :bookmark:`<eid>:<vid>`

Example: :bookmark:`1234:table`

Replace the directive with the output of applying the view to the resultset returned by the query stored in the
bookmark. By default, the view is the one stored in the bookmark, but it can be overridden by the directive as in
the example above.

“X eid %(userid)s” can be used in the RQL query stored in the Bookmark, for this query will be executed with
the argument {‘userid’: _cw.user.eid}.

3.5 Importing relational data into a CubicWeb instance

3.5.1 Introduction

This tutorial explains how to import data from an external source (e.g. a collection of files) into a CubicWeb cube
instance.

62 Chapter 3. Tutorials

http://wiki.github.com/windmill/windmill/advanced-topics

Cubicweb Documentation, Release 3.38.10

First, once we know the format of the data we wish to import, we devise a data model, that is, a CubicWeb (Yams)
schema which reflects the way the data is structured. This schema is implemented in the schema.py file. In this
tutorial, we will describe such a schema for a particular data set, the Diseasome data (see below).

Once the schema is defined, we create a cube and an instance. The cube is a specification of an application, whereas
an instance is the application per se.

Once the schema is defined and the instance is created, the import can be performed, via the following steps:

1. Build a custom parser for the data to be imported. Thus, one obtains a Python memory representation of the data.

2. Map the parsed data to the data model defined in schema.py.

3. Perform the actual import of the data. This comes down to “populating” the data model with the memory repre-
sentation obtained at 1, according to the mapping defined at 2.

This tutorial illustrates all the above steps in the context of relational data stored in the RDF format.

More specifically, we describe the import of Diseasome RDF/OWL data.

3.5.2 Building a data model

The first thing to do when using CubicWeb for creating an application from scratch is to devise a data model, that is, a
relational representation of the problem to be modeled or of the structure of the data to be imported.

In such a schema, we define an entity type (EntityType objects) for each type of entity to import. Each such type has
several attributes. If the attributes are of known CubicWeb (Yams) types, viz. numbers, strings or characters, then they
are defined as attributes, as e.g. attribute = Int() for an attribute named attribute which is an integer.

Each such type also has a set of relations, which are defined like the attributes, except that they represent, in fact,
relations between the entities of the type under discussion and the objects of a type which is specified in the relation
definition.

For example, for the Diseasome data, we have two types of entities, genes and diseases. Thus, we create two classes
which inherit from EntityType:

class Disease(EntityType):
Corresponds to http://www.w3.org/2000/01/rdf-schema#label
label = String(maxsize=512, fulltextindexed=True)
...

#Corresponds to http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/
→˓associatedGene

associated_genes = SubjectRelation('Gene', cardinality='**')
...

#Corresponds to 'http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/
→˓chromosomalLocation'

chromosomal_location = SubjectRelation('ExternalUri', cardinality='?*', inlined=True)

class Gene(EntityType):
...

In this schema, there are attributes whose values are numbers or strings. Thus, they are defined by using the CubicWeb
/ Yams primitive types, e.g., label = String(maxsize=12). These types can have several constraints or attributes,
such as maxsize. There are also relations, either between the entity types themselves, or between them and a CubicWeb
type, ExternalUri. The latter defines a class of URI objects in CubicWeb. For instance, the chromosomal_location

3.5. Importing relational data into a CubicWeb instance 63

http://datahub.io/dataset/fu-berlin-diseasome

Cubicweb Documentation, Release 3.38.10

attribute is a relation between a Disease entity and an ExternalUri entity. The relation is marked by the CubicWeb
/ Yams SubjectRelation method. The latter can have several optional keyword arguments, such as cardinality
which specifies the number of subjects and objects related by the relation type specified. For example, the '?*'
cardinality in the chromosomal_relation relation type says that zero or more Disease entities are related to zero
or one ExternalUri entities. In other words, a Disease entity is related to at most one ExternalUri entity via the
chromosomal_location relation type, and that we can have zero or more Disease entities in the data base. For a
relation between the entity types themselves, the associated_genes between a Disease entity and a Gene entity is
defined, so that any number of Gene entities can be associated to a Disease, and there can be any number of Disease
s if a Gene exists.

Of course, before being able to use the CubicWeb / Yams built-in objects, we need to import them:

from yams.buildobjs import EntityType, SubjectRelation, String, Int
from cubicweb.schemas.base import ExternalUri

3.5.3 Building a custom data parser

The data we wish to import is structured in the RDF format, as a text file containing a set of lines. On each line, there
are three fields. The first two fields are URIs (“Universal Resource Identifiers”). The third field is either an URI or a
string. Each field bares a particular meaning:

• the leftmost field is an URI that holds the entity to be imported. Note that the entities defined in the data model
(i.e., in schema.py) should correspond to the entities whose URIs are specified in the import file.

• the middle field is an URI that holds a relation whose subject is the entity defined by the leftmost field. Note that
this should also correspond to the definitions in the data model.

• the rightmost field is either an URI or a string. When this field is an URI, it gives the object of the relation
defined by the middle field. When the rightmost field is a string, the middle field is interpreted as an attribute of
the subject (introduced by the leftmost field) and the rightmost field is interpreted as the value of the attribute.

Note however that some attributes (i.e. relations whose objects are strings) have their objects defined as strings followed
by ^^ and by another URI; we ignore this part.

Let us show some examples:

• of line holding an attribute definition: <http://www4.wiwiss.fu-berlin.de/diseasome/resource/
genes/CYP17A1> <http://www.w3.org/2000/01/rdf-schema#label> "CYP17A1" . The line contains
the definition of the label attribute of an entity of type gene. The value of label is ‘CYP17A1’.

• of line holding a relation definition: <http://www4.wiwiss.fu-berlin.de/diseasome/resource/
diseases/1> <http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseasome/
associatedGene> <http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/HADH2>
. The line contains the definition of the associatedGene relation between a disease subject entity identified
by 1 and a gene object entity defined by HADH2.

Thus, for parsing the data, we can (:note: see the diseasome_parser module):

1. define a couple of regular expressions for parsing the two kinds of lines, RE_ATTS for parsing the attribute
definitions, and RE_RELS for parsing the relation definitions.

2. define a function that iterates through the lines of the file and retrieves (yield s) a (subject, relation, object) tuple
for each line. We called it _retrieve_structure in the diseasome_parser module. The function needs the
file name and the types for which information should be retrieved.

Alternatively, instead of hand-making the parser, one could use the RDF parser provided in the dataio cube.

Once we get to have the (subject, relation, object) triples, we need to map them into the data model.

64 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

3.5.4 Mapping the data to the schema

In the case of diseasome data, we can just define two dictionaries for mapping the names of the relations as extracted by
the parser, to the names of the relations as defined in the schema.py data model. In the diseasome_parser module
they are called MAPPING_ATTS and MAPPING_RELS. Given that the relation and attribute names are given in CamelCase
in the original data, mappings are necessary if we follow the PEP08 when naming the attributes in the data model. For
example, the RDF relation chromosomalLocation is mapped into the schema relation chromosomal_location.

Once these mappings have been defined, we just iterate over the (subject, relation, object) tuples provided by the parser
and we extract the entities, with their attributes and relations. For each entity, we thus have a dictionary with two keys,
attributes and relations. The value associated to the attributes key is a dictionary containing (attribute: value)
pairs, where “value” is a string, plus the cwuri key / attribute holding the URI of the entity itself. The value associated
to the relations key is a dictionary containing (relation: value) pairs, where “value” is an URI. This is implemented
in the entities_from_rdf interface function of the module diseasome_parser. This function provides an iterator
on the dictionaries containing the attributes and relations keys for all entities.

However, this is a simple case. In real life, things can get much more complicated, and the mapping can be far from
trivial, especially when several data sources (which can follow different formatting and even structuring conventions)
must be mapped into the same data model.

3.5.5 Importing the data

The data import code should be placed in a Python module. Let us call it diseasome_import.py. Then, this module
should be called via cubicweb-ctl, as follows:

cubicweb-ctl shell diseasome_import.py -- <other arguments e.g. data file>

In the import module, we should use a store for doing the import. A store is an object which provides three kinds of
methods for importing data:

• a method for importing the entities, along with the values of their attributes.

• a method for importing the relations between the entities.

• a method for committing the imports to the database.

In CubicWeb, we have four stores:

1. ObjectStore base class for the stores in CubicWeb. It only provides a skeleton for all other stores and provides
the means for creating the memory structures (dictionaries) that hold the entities and the relations between them.

2. RQLObjectStore: store which uses the RQL language for performing database insertions and updates. It relies
on all the CubicWeb hooks machinery, especially for dealing with security issues (database access permissions).

2. NoHookRQLObjectStore: store which uses the RQL language for performing database insertions and updates,
but for which all hooks are deactivated. This implies that certain checks with respect to the CubicWeb / Yams
schema (data model) are not performed. However, all SQL queries obtained from the RQL ones are executed in
a sequential manner, one query per inserted entity.

4. SQLGenObjectStore: store which uses the SQL language directly. It inserts entities either sequentially, by
executing an SQL query for each entity, or directly by using one PostGRES COPY FROM query for a set of similarly
structured entities.

For really massive imports (millions or billions of entities), there is a cube dataio which contains another store, called
MassiveObjectStore. This store is similar to SQLGenObjectStore, except that anything related to CubicWeb is
bypassed. That is, even the CubicWeb EID entity identifiers are not handled. This store is the fastest, but has a slightly

3.5. Importing relational data into a CubicWeb instance 65

Cubicweb Documentation, Release 3.38.10

different API from the other four stores mentioned above. Moreover, it has an important limitation, in that it doesn’t
insert inlined1 relations in the database.

In the following section we will see how to import data by using the stores in CubicWeb’s dataimport module.

Using the stores in dataimport

ObjectStore is seldom used in real life for importing data, since it is only the base store for the other stores and it
doesn’t perform an actual import of the data. Nevertheless, the other three stores, which import data, are based on
ObjectStore and provide the same API.

All three stores RQLObjectStore, NoHookRQLObjectStore and SQLGenObjectStore provide exactly the same API
for importing data, that is entities and relations, in an SQL database.

Before using a store, one must import the dataimport module and then initialize the store, with the current session
as a parameter:

import cubicweb.dataimport as cwdi
...

store = cwdi.RQLObjectStore(session)

Each such store provides three methods for data import:

1. create_entity(Etype, **attributes), which allows us to add an entity of the Yams type Etype to the
database. This entity’s attributes are specified in the attributes dictionary. The method returns the entity
created in the database. For example, we add two entities, a person, of Person type, and a location, of Location
type:

person = store.create_entity('Person', name='Toto', age='18', height='190')

location = store.create_entity('Location', town='Paris', arrondissement='13')

2. relate(subject_eid, r_type, object_eid), which allows us to add a relation of the Yams type r_type
to the database. The relation’s subject is an entity whose EID is subject_eid; its object is another entity, whose
EID is object_eid. For example2:

store.relate(person.eid(), 'lives_in', location.eid(), **kwargs)

kwargs is only used by the SQLGenObjectStore’s relate method and is here to allow us to specify the type
of the subject of the relation, when the relation is defined as inlined in the schema.

1. flush(), which allows us to perform the actual commit into the database, along with some cleanup operations.
Ideally, this method should be called as often as possible, that is after each insertion in the database, so that

1 An inlined relation is a relation defined in the schema with the keyword argument inlined=True. Such a relation is inserted in the database
as an attribute of the entity whose subject it is.

2

The eid method of an entity defined via create_entity returns the entity identifier as assigned by CubicWeb when creating the entity. This
only works for entities defined via the stores in the CubicWeb’s dataimport module.

The keyword argument that is understood by SQLGenObjectStore is called subjtype and holds the type of the subject entity. For the example
considered here, this comes to having3:

store.relate(person.eid(), 'lives_in', location.eid(), subjtype=person.cw_etype)

If subjtype is not specified, then the store tries to infer the type of the subject. However, this doesn’t always work, e.g. when there are several
possible subject types for a given relation type.

3

The cw_etype attribute of an entity defined via create_entity holds the type of the entity just created. This only works for entities defined
via the stores in the CubicWeb’s dataimport module. In the example considered here, person.cw_etype holds 'Person'.

All the other stores but SQLGenObjectStore ignore the kwargs parameters.

66 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

database sessions are kept as atomic as possible. In practice, we usually call this method twice: first, after all the
entities have been created, second, after all relations have been created.

Note however that before each commit the database insertions have to be consistent with the schema. Thus, if,
for instance, an entity has an attribute defined through a relation (viz. a SubjectRelation) with a "1" or "+"
object cardinality, we have to create the entity under discussion, the object entity of the relation under discussion,
and the relation itself, before committing the additions to the database.

The flush method is simply called as:

store.flush().

Using the MassiveObjectStore in the dataio cube

This store, available in the dataio cube, allows us to fully dispense with the CubicWeb import mechanisms and hence
to interact directly with the database server, via SQL queries.

Moreover, these queries rely on PostGreSQL’s COPY FROM instruction to create several entities in a single query. This
brings tremendous performance improvements with respect to the RQL-based data insertion procedures.

However, the API of this store is slightly different from the API of the stores in CubicWeb’s dataimport module.

Before using the store, one has to import the dataio cube’s dataimport module, then initialize the store by giving it
the session parameter:

from cubicweb_dataio import dataimport as mcwdi
...

store = mcwdi.MassiveObjectStore(session)

The MassiveObjectStore provides six methods for inserting data into the database:

1. init_rtype_table(SubjEtype, r_type, ObjEtype), which specifies the creation of the tables associated
to the relation types in the database. Each such table has three column, the type of the subject entity, the type of
the relation (that is, the name of the attribute in the subject entity which is defined via the relation), and the type
of the object entity. For example:

store.init_rtype_table('Person', 'lives_in', 'Location')

Please note that these tables can be created before the entities, since they only specify their types, not their unique
identifiers.

2. create_entity(Etype, **attributes), which allows us to add new entities, whose attributes are given in
the attributes dictionary. Please note however that, by default, this method does not return the created entity.
The method is called, for example, as in:

store.create_entity('Person', name='Toto', age='18', height='190',
uri='http://link/to/person/toto_18_190')

store.create_entity('Location', town='Paris', arrondissement='13',
uri='http://link/to/location/paris_13')

In order to be able to link these entities via the relations when needed, we must provide ourselves a means for
uniquely identifying the entities. In general, this is done via URIs, stored in attributes like uri or cwuri. The
name of the attribute is irrelevant as long as its value is unique for each entity.

3. relate_by_iid(subject_iid, r_type, object_iid) allows us to actually relate the entities uniquely
identified by subject_iid and object_iid via a relation of type r_type. For example:

3.5. Importing relational data into a CubicWeb instance 67

Cubicweb Documentation, Release 3.38.10

store.relate_by_iid('http://link/to/person/toto_18_190',
'lives_in',
'http://link/to/location/paris_13')

Please note that this method does not work for inlined relations!

4. convert_relations(SubjEtype, r_type, ObjEtype, subj_iid_attribute,
obj_iid_attribute) allows us to actually insert the relations in the database. At one call of this
method, one inserts all the relations of type rtype between entities of given types. subj_iid_attribute and
object_iid_attribute are the names of the attributes which store the unique identifiers of the entities, as
assigned by the user. These names can be identical, as long as their values are unique. For example, for inserting
all relations of type lives_in between People and Location entities, we write:

store.convert_relations('Person', 'lives_in', 'Location', 'uri', 'uri')

5. flush() performs the actual commit in the database. It only needs to be called after create_entity and
relate_by_iid calls. Please note that relate_by_iid does not perform insertions into the database, hence
calling flush() for it would have no effect.

6. cleanup() performs database cleanups, by removing temporary tables. It should only be called at the end of
the import.

Application to the Diseasome data

Import setup

We define an import function, diseasome_import, which does basically four things:

1. creates and initializes the store to be used, via a line such as:

store = cwdi.SQLGenObjectStore(session)

where cwdi is the imported cubicweb.dataimport or cubicweb_dataio.dataimport.

2. calls the diseasome parser, that is, the entities_from_rdf function in the diseasome_parser module and
iterates on its result, in a line such as:

for entity, relations in parser.entities_from_rdf(filename, ('gene', 'disease')):

where parser is the imported diseasome_parser module, and filename is the name of the file containing
the data (with its path), e.g. ../data/diseasome_dump.nt.

3. creates the entities to be inserted in the database; for Diseasome, there are two kinds of entities:

1. entities defined in the data model, viz. Gene and Disease in our case.

2. entities which are built in CubicWeb / Yams, viz. ExternalUri which define URIs.

As we are working with RDF data, each entity is defined through a series of URIs. Hence, each “relational
attribute”4 of an entity is defined via an URI, that is, in CubicWeb terms, via an ExternalUri entity. The
entities are created, in the loop presented above, as such:

4

By “relational attribute” we denote an attribute (of an entity) which is defined through a relation, e.g. the chromosomal_location attribute
of Disease entities, which is defined through a relation between a Disease and an ExternalUri.

The ExternalUri entities are as many as URIs in the data file. For them, we define a unique attribute, uri, which holds the URI under discussion:

extu = store.create_entity('ExternalUri', uri="http://path/of/the/uri")

68 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

ent = store.create_entity(etype, **entity)

where etype is the appropriate entity type, either Gene or Disease.

1. creates the relations between the entities. We have relations between:

1. entities defined in the schema, e.g. between Disease and Gene entities, such as the associated_genes
relation defined for Disease entities.

2. entities defined in the schema and ExternalUri entities, such as gene_id.

The way relations are added to the database depends on the store:

• for the stores in the CubicWeb dataimport module, we only use store.relate, in another loop, on the
relations (that is, a loop inside the preceding one, mentioned at step 2):

for rtype, rels in relations.iteritems():
...

store.relate(ent.eid(), rtype, extu.eid(), **kwargs)

where kwargs is a dictionary designed to accommodate the need for specifying the type of the subject
entity of the relation, when the relation is inlined and SQLGenObjectStore is used. For example:

...
store.relate(ent.eid(), 'chromosomal_location', extu.eid(), subjtype='Disease')

• for the MassiveObjectStore in the dataio cube’s dataimportmodule, the relations are created in three
steps:

1. first, a table is created for each relation type, as in:

...
store.init_rtype_table(ent.cw_etype, rtype, extu.cw_etype)

which comes down to lines such as:

store.init_rtype_table('Disease', 'associated_genes', 'Gene')
store.init_rtype_table('Gene', 'gene_id', 'ExternalUri')

2. second, the URI of each entity will be used as its identifier, in the relate_by_iid method, such as:

disease_uri = 'http://www4.wiwiss.fu-berlin.de/diseasome/resource/diseases/3
→˓'
gene_uri = '<http://www4.wiwiss.fu-berlin.de/diseasome/resource/genes/HSD3B2
→˓'
store.relate_by_iid(disease_uri, 'associated_genes', gene_uri)

3. third, the relations for each relation type will be added to the database, via the convert_relations
method, such as in:

store.convert_relations('Disease', 'associated_genes', 'Gene', 'cwuri',
→˓'cwuri')

and:

store.convert_relations('Gene', 'hgnc_id', 'ExternalUri', 'cwuri', 'uri')

3.5. Importing relational data into a CubicWeb instance 69

Cubicweb Documentation, Release 3.38.10

where cwuri and uri are the attributes which store the URIs of the entities defined in the data model,
and of the ExternalUri entities, respectively.

2. flushes all relations and entities:

store.flush()

which performs the actual commit of the inserted entities and relations in the database.

If the MassiveObjectStore is used, then a cleanup of temporary SQL tables should be performed at the end of the
import:

store.cleanup()

Timing benchmarks

In order to time the import script, we just decorate the import function with the timed decorator:

from logilab.common.decorators import timed
...

@timed
def diseasome_import(session, filename):

...

After running the import function as shown in the “Importing the data” section, we obtain two time measurements:

diseasome_import clock: ... / time: ...

Here, the meanings of these measurements are5:

• clock is the time spent by CubicWeb, on the server side (i.e. hooks and data pre- / post-processing on SQL
queries),

• time is the sum between clock and the time spent in PostGreSQL.

The import function is put in an import module, named diseasome_import here. The module is called directly from
the CubicWeb shell, as follows:

cubicweb-ctl shell diseasome_instance diseasome_import.py \
-- -df diseasome_import_file.nt -st StoreName

The module accepts two arguments:

• the data file, introduced by -df [--datafile], and

• the store, introduced by -st [--store].

The timings (in seconds) for different stores are given in the following table, for importing 4213 Disease entities and
3919 Gene entities with the import module just described:

5 The meanings of the clock and time measurements, when using the @timed decorators, were taken from a blog post on massive data import
in CubicWeb.

70 Chapter 3. Tutorials

http://www.cubicweb.org/blogentry/2116712
http://www.cubicweb.org/blogentry/2116712

Cubicweb Documentation, Release 3.38.10

Store CubicWeb time (clock) PostGreSQL time (time - clock) Total time
RQLObjectStore 225.98 62.05 288.03
NoHookRQLObjectStore 62.73 51.38 114.11
SQLGenObjectStore 20.41 11.03 31.44
MassiveObjectStore 4.84 6.93 11.77

3.5.6 Conclusions

In this tutorial we have seen how to import data in a CubicWeb application instance. We have first seen how to create
a schema, then how to create a parser of the data and a mapping of the data to the schema. Finally, we have seen four
ways of importing data into CubicWeb.

Three of those are integrated into CubicWeb, namely the RQLObjectStore, NoHookRQLObjectStore and
SQLGenObjectStore stores, which have a common API:

• RQLObjectStore is by far the slowest, especially its time spent on the CubicWeb side, and so it should be used
only for small amounts of “sensitive” data (i.e. where security is a concern).

• NoHookRQLObjectStore slashes by almost four the time spent on the CubicWeb side, but is also quite slow; on
the PostGres side it is as slow as the previous store. It should be used for data where security is not a concern,
but consistency (with the data model) is.

• SQLGenObjectStore slashes by three the time spent on the CubicWeb side and by five the time spent on the
PostGreSQL side. It should be used for relatively great amounts of data, where security and data consistency are
not a concern. Compared to the previous store, it has the disadvantage that, for inlined relations, we must specify
their subjects’ types.

For really huge amounts of data there is a fourth store, MassiveObjectStore, available from the dataio cube. It
provides a blazing performance with respect to all other stores: it is almost 25 times faster than RQLObjectStore and
almost three times faster than SQLGenObjectStore. However, it has a few usage caveats that should be taken into
account:

1. it cannot insert relations defined as inlined in the schema,

2. no security or consistency check is performed on the data,

3. its API is slightly different from the other stores.

Hence, this store should be used when security and data consistency are not a concern, and there are no inlined relations
in the schema.

3.6 Create a Website from scratch with CubicWeb

3.6.1 Introduction

This tutorial aims to demonstrate how to create a website using CubicWeb. This website will present museums from
French Ministry of Culture data, available here.

First, we will start with installation and creation of our website, and a short presentation of out of the box CubicWeb
functionalities. Then, we will see how to enhance our views using Jinja2 templates or React components to have a
better looking site. Finally, we will see how to manage more data, and how to serialize them in RDF.

At the end of this tutorial, you will have a website giving information about all France’s museums, describes them in
RDF and present them on a map.

You can find the code of the finished tutorial in our forge, look for the cube tuto.

3.6. Create a Website from scratch with CubicWeb 71

https://data.culture.gouv.fr/explore/dataset/liste-et-localisation-des-musees-de-france/export/
https://forge.extranet.logilab.fr/cubicweb/cubes/tuto/

Cubicweb Documentation, Release 3.38.10

Getting started

Installation of CubicWeb and dependencies

In this tutorial, we choose to install CubicWeb as a Python Package in a Python3 virtual environment, with pip; instead
of using Debian installation. We will also need to install psycopg2-binary if we use a postgresql database:

python3 -m venv venv-tuto
source venv-tuto/bin/activate
pip install cubicweb
pip install psycopg2-binary

Create a cube

Now we have CubicWeb installed, we will need to create a cube, which will contain our application. We will call our
cube tuto:

cubicweb-ctl newcube tuto -d tuto

This command will lead to several questions, as a short description of the new cube. Then, it will create a directory
named tuto (as we specified it with -d) reflecting the structure described in Standard structure for a cube.

To install our new cube on the virtual environment, run in the tuto/cubicweb-tuto directory:

pip install -e .

All cubicweb-ctl commands are described in details in cubicweb-ctl tool.

Create and start our instance

Now we created our cube, we need to instantiate it to launch our website:

cubicweb-ctl create tuto tuto_instance

Several questions will be asked to parameter our new instance, most of them can be answered with default value, some
(as DB user and password) can’t. At the end, it will be asked if we want to create the database now. We do not need it
right now, as we will create in further steps.

Then, we can launch our instance in debug mod (with -D option):

cubicweb-ctl pyramid -D tuto_instance

You can now access the instance from http://localhost:8080

72 Chapter 3. Tutorials

http://localhost:8080

Cubicweb Documentation, Release 3.38.10

As you can see, we already have several functionalities which come out-of-the-box, for instance user management, data
model schema displaying, etc.

Now, we need to design our data model, to be able to create and display some museums.

Defining our data model

We want to display some museums, each have a name, a postal address, maybe one or several director, a geographical
position (latitude and longitude) and are in a city. Some of these concepts will be classes, others attributes.

Thus, we will write the following code in our tuto/cubicweb_tuto/schema.py file:

from yams.buildobjs import EntityType, String, Float, RelationDefinition, Int

class Museum(EntityType):
name = String()
latitude = Float()
longitude = Float()
postal_address = String()

class City(EntityType):
name = String()
zip_code = Int()

(continues on next page)

3.6. Create a Website from scratch with CubicWeb 73

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

class Person(EntityType):
name = String()
email = String()

class is_in(RelationDefinition):
subject = 'Museum'
object = 'City'
cardinality = '1*'

class director(RelationDefinition):
subject = 'Museum'
object = 'Person'
cardinality = '**'

The first step is the import from the yams package necessary classes to build the schema.

This file defines the following:

• a Museum has a name, a latitude, a longitude and a postal address as attributes.

– the name and postal address are strings;

– the latitude and longitude are floating numbers.

• a City has a name and a zip code as attributes.

• a Person has a name and an email as attributes

• a Museum must be linked to a City using the is_in relation

– * means a City may be linked to 0 to N Museum, 1 means a Museum must be linked to one and only one
City. For completeness, you can also use + for 1 to N, and ? for 0 or 1.

• a Museum can be linked to 0 or several Person using the director relation, and a Person can be linked to 0 or
several Museum.

Of course, there are a lot of other data types and things such as constraints, permissions, etc, that may be defined in the
schema, but those will not be covered in this tutorial.

In our case, our relations have only on subject type. Thus, we can define them directly in Museum class, using Subjec-
tRelation, like this:

from yams.buildobjs import EntityType, String, Float, SubjectRelation, Int

class Museum(EntityType):
name = String()
latitude = Float()
longitude = Float()
is_in = SubjectRelation("City", cardinality="1*")
director = SubjectRelation("Person", cardinality="**")
postal_address = String()

class City(EntityType):
name = String()
zip_code = Int()

(continues on next page)

74 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

class Person(EntityType):
name = String()
email = String()

Once the schema created, we need to create our database, and then initialise it with the aforementioned schema:

cubicweb-ctl db-create tuto_instance
cubicweb-ctl db-init tuto_instance

Note: At the end of the db-create, it is asked if we want to run database initialisation, thus we can avoid running
db-init.

Note: In our case, we had no existing database, so we had to initialize a database. But with a pre-existing database
and schema, we have to use migration scripts, see Migration for more information about this topic.

If we launch again our instance, we should see our new entity types in the homepage: City, Museum, Person; and for
each, the number of instance of these types (currently 0, as we don’t have any of these entities).

By clicking on data model schema, we can see our data model, with our three classes and two relations.

3.6. Create a Website from scratch with CubicWeb 75

Cubicweb Documentation, Release 3.38.10

Adding data

Now we have our entity types defined, we will see how to add some entities. To do this, we need to be connected as
administrator, using the login button at right top of the site, or visiting http://localhost:8080/login. As you can see, we
have more choices in the homepage, and beside each entity type, we have a +, allowing to create a new entity of this
type.

76 Chapter 3. Tutorials

http://localhost:8080/login

Cubicweb Documentation, Release 3.38.10

As we built our schema, a Museum have to be linked to a City, so we first need to create a City before adding a museum.
To do this, we just have to click on the + beside City (0), and fill the form.

3.6. Create a Website from scratch with CubicWeb 77

Cubicweb Documentation, Release 3.38.10

As you can see, all the fields comes directly from the schema and the form is automatically generated by CubicWeb.

When all the fields are fulfilled, we just have to validate, and we are redirected on the city page, where we can see its
different attributes, and on the left, several possible action; as modify our entity or delete it.

78 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

Now we have our first city, we will add its three museums. As for the city creation, we have an autogenerated form; but
with a little particularity: a field to choose the city to link with our museum. This field must be fulfilled to create our
entity.

3.6. Create a Website from scratch with CubicWeb 79

Cubicweb Documentation, Release 3.38.10

As for the city, we are redirected on the entity view after its creation.

80 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

We then add two other museums. When we go back to the homepage, we can see all three museums when we click on
Museum_plural (3).

3.6. Create a Website from scratch with CubicWeb 81

Cubicweb Documentation, Release 3.38.10

If we click on City in the homepage, we do not have a list view, but our single entity view. This is because in the first
case, the framework chose to use the ‘primary’ view since there is only one entity in the data to be displayed. As we
have three museums, the ‘list’ view is more appropriate and hence is being used.

There are various other places where CubicWeb adapts to display data in the best way, the main being provided by the
view selection mechanism that will be detailed later.

Customize museum primary view

The ‘primary’ view (i.e. any view with the identifier set to ‘primary’) is the one used to display all the information about
a single entity. The standard primary view is one of the most sophisticated views of all. It has several customisation
points, but its power comes with uicfg, allowing you to control it without having to subclass it. More information are
available here : The Primary View.

Now we have several museums, we want an easier way to identify its city when we are on the museum page. To achieve
this, we will subclass PrimaryView and override render_entity_title method in tuto/cubicweb_tuto/views.py:

from cubicweb.predicates import is_instance
from cubicweb.web.views.primary import PrimaryView

class MuseumPrimaryView(PrimaryView):
__select__ = is_instance("Museum")

def render_entity_title(self, entity):
"""Renders the entity title.
"""

(continues on next page)

82 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

city_name = entity.is_in[0].name
self.w(f"<h1>{entity.name} ({city_name})</h1>")

As stated before, CubicWeb comes with a system of views selection. This system is, among other things, based on
selectors declared with __select__ (you’ll find more information about this in the Registries and application objects
chapter). As we want to customize museum primary view, we use __select__ = is_instance(“Museum”) to tell Cu-
bicWeb this is only applicable when we display a Museum entity.

Then, we just override the method used to compute title to add the city name. To reach the city name, we use the
relation is_in and choose the first and only one linked city, then ask for its name.

Use entities.py to add more logic

CubicWeb provides an ORM to easily programmaticaly manipulate entities. By default, entity types are instances
of the AnyEntity class, which holds a set of predefined methods as well as property automatically generated for
attributes/relations of the type it represents.

You can redefine each entity to provide additional methods or whatever you want to help you write your application.
Customizing an entity requires that your entity:

• inherits from cubicweb.entities.AnyEntity or any subclass

• defines a __regid__ linked to the corresponding data type of your schema

You may then want to add your own methods, override default implementation of some method, etc. . .

As we may want reuse our custom museum title (with city name, as defined in previous section), we will define it as a
property of our Museum class.

3.6. Create a Website from scratch with CubicWeb 83

Cubicweb Documentation, Release 3.38.10

To do so, write this code in tuto/cubicweb_tuto/entities.py:

from cubicweb.entities import AnyEntity, fetch_config

class Museum(AnyEntity):
__regid__ = "Museum"

@property
def title_with_city(self):

return f"{self.name} ({self.is_in[0].name})"

Then, we just have to use it our previously defined view in tuto/cubicweb_tuto/views.py:

from cubicweb.predicates import is_instance
from cubicweb.web.views.primary import PrimaryView

class MuseumPrimaryView(PrimaryView):
__select__ = is_instance("Museum")

def render_entity_title(self, entity):
"""Renders the entity title.
"""
self.w(f"<h1>{entity.title_with_city}</h1>")

Conclusion

In this first part, we laid the cornerstone of our futur site, and discovered some core functionalities of CubicWeb. In
next parts, we will improve views and see how to import all our data.

Enhance views

In Getting started, we saw how to develop our views by writing html code directly in CubicWeb views. In this part,
we will see how to customize our web application using different methods : with pyramid views using jinja2 templates
and with React.

Pyramid and Jinja2

React in a CubicWeb view

In this section, we want to add a map in museum pages to display where is the museum associated with the page.

To do this, we will use React simple maps, a React library. Our goal is to add a react component inside our museum
primary view.

First, we will setup our environment. At logilab, we use Typescript when it is possible, so we will use it also in this
tutorial. As module builder, we will use Webpack.

Thus, we need to create three files at the root of our cube: package.json, tsconfig.json and webpack.config.js. A lot of
documentation can be find on the Web about how to configure a React/Typescript environment, so we are not going to
dwell on it in this tutorial; and we will simply copy and paste the following files.

84 Chapter 3. Tutorials

https://www.react-simple-maps.io/
https://reactjs.org/
https://www.typescriptlang.org/
https://webpack.js.org/

Cubicweb Documentation, Release 3.38.10

package.json:

{
"name": "cubicweb_tuto",
"version": "1.0.0",
"description": "Summary ------- A cube for new CW tutorial",
"directories": {
"test": "test"

},
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1",
"build": "webpack",
"watch": "webpack --watch --mode=development"

},
"author": "Logilab",
"license": "GPL-2.0-or-later",
"dependencies": {
"@types/react": "^17.0.0",
"@types/react-dom": "^17.0.0",
"@types/react-simple-maps": "^1.0.3",
"prop-types": "^15.7.2",
"react": "^17.0.1",
"react-dom": "^17.0.1",
"react-simple-maps": "^2.3.0",
"ts-loader": "^8.0.14",
"typescript": "^4.1.3",
"webpack": "^5.18.0",
"webpack-cli": "^4.4.0"

}
}

tsconfig.json:

{
"compilerOptions": {
"target": "es5",
"module": "commonjs",
"jsx": "react",
"strict": true,
"esModuleInterop": true

}
}

webpack.config.js:

const path = require("path");

module.exports = {
entry: {
"map.js": "./appjs/geomap.tsx",

},
output: {
filename: "[name]",
path: path.resolve(__dirname, "./cubicweb_tuto/data/")

(continues on next page)

3.6. Create a Website from scratch with CubicWeb 85

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

},
resolve: {
extensions: [".tsx", ".ts", ".jsx", ".js"]

},
module: {
rules: [
{
test: [/\.tsx?$/],
exclude: /node_modules/,
use: ["ts-loader"]

}
]

},
plugins: []

};

Now we have our configuration files, we have to install NodeJS and then install our project using npm.

sudo apt-get install nodejs
npm install

They are two last things to do:

• create a component to display a museum on the map;

• integrate our component in a CubicWeb view.

By convention, we put our js files in a appjs directory, and bundle are built in cubicweb_tuto/data (as you can see in
our webpack.config.js). Then, we will create a file geomap.tsx in appjs/.

For our component, we will need three parameters: our museum name, its latitude and its longitude. These parameters
will be defined in our CubicWeb view when we will call our script. Our file geomap.tsx can be written like this:

import React from 'react';
import ReactDOM from 'react-dom';
import {
ComposableMap,
Geographies,
Geography,
Marker,
Point

} from "react-simple-maps";

const geoUrl = "https://raw.githubusercontent.com/zcreativelabs/react-simple-maps/master/
→˓topojson-maps/world-110m.json";

declare const data: {
name: string,
latitude: number,
longitude: number,

}

const MapChart = () => {
return (

(continues on next page)

86 Chapter 3. Tutorials

https://nodejs.org/

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

<ComposableMap>
<Geographies geography={geoUrl}>
{({ geographies }) =>
geographies
.map(geo => (
<Geography
key={geo.rsmKey}
geography={geo}
fill="#EAEAEC"
stroke="#D6D6DA"

/>
))

}
</Geographies>
<Marker coordinates={[data.longitude, data.latitude] as Point}>
<g
fill="none"
stroke="#FF5533"
strokeWidth="2"
strokeLinecap="round"
strokeLinejoin="round"
transform="translate(-12, -24)"

>
<circle cx="12" cy="10" r="3" />
<path d="M12 21.7C17.3 17 20 13 20 10a8 8 0 1 0-16 0c0 3 2.7 6.9 8 11.7z" />

</g>
<text
textAnchor="middle"
y={10}
style={{ fontFamily: "system-ui", fill: "#5D5A6D" }}

>
{data.name}

</text>
</Marker>

</ComposableMap>
);

};

function App() {
return <MapChart/>

}

const root = document.getElementById("awesome-map");
ReactDOM.render(<App/>, root);

Now we will override the render_entity(self, entity) function of the Museum PrimaryView, in cubicweb-tuto/views.
py to add:

• the bundle javascript including our component;

• a div with the id awesome-map which will be used by our component.

class MuseumPrimaryView(PrimaryView):
(continues on next page)

3.6. Create a Website from scratch with CubicWeb 87

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

__select__ = is_instance("Museum")

def render_entity(self, entity):
self.render_entity_toolbox(entity)
self.render_entity_title(entity)
entity's attributes and relations, excluding meta data
if the entity isn't meta itself
if self.is_primary():

boxes = self._prepare_side_boxes(entity)
else:

boxes = None
if boxes or hasattr(self, "render_side_related"):

self.w('<table width="100%"><tr><td style="width: 75%">')

self.w('<div class="mainInfo">')
self.content_navigation_components("navcontenttop")
self.render_entity_attributes(entity)
if self.main_related_section:

self.render_entity_relations(entity)
self.render_map(entity)
self.content_navigation_components("navcontentbottom")
self.w("</div>")
side boxes
if boxes or hasattr(self, "render_side_related"):

self.w("</td><td>")
self.w('<div class="primaryRight">')
self.render_side_boxes(boxes)
self.w("</div>")
self.w("</td></tr></table>")

def render_entity_title(self, entity):
"""Renders the entity title, by default using entity's
:meth:`dc_title()` method.
"""
self.w(f"<h1>{entity.title_with_city}</h1>")

def render_map(self, entity):
"""Renders a map displaying where the museum is."""
if not (entity.latitude and entity.longitude):

return
js_file = f"{self._cw.vreg.config.datadir_url}map.js"
data = json_dumps(entity)
self.w('<div id="awesome-map"></div>')
self.w(

f"""
<script type="text/javascript">

const data = {data};
</script>
<script src={js_file}></script>

"""
)

Most part of render_entity(self, entity) are the same as its definition in PrimaryView, except that we add a call to

88 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

render_map(self, entity); which will add a div tag with a specific id and a script tag adding our javascript bundle, and
define variables containing information to display a museum on the map. The specific id must be the same as the one
we defined in our javascript file, awesome-map.

Now, it’s time to build the javascript bundle using:

npm run build

And then, run our application:

cubicweb-ctl pyramid -D tuto_instance

We now have a world map displaying the location of our museum on museum pages. A lot of things could be done to
have a better result, like center the map on the museum, but it’s out of the scope of this tutorial.

React in a Pyramid view

Data management with CubicWeb

Import data

With our application customized, let’s see how to import more data. There is several ways to import data in CubicWeb.
In our tutorial, we want to import our museums from a csv file. This file is provided by the France’s Ministry of Culture,
and is available here.

There are several ways to import data in CubicWeb; in this tutorial, we will use one of them, the others are described
here: Data Import.

First of all, we define in tuto/cubicweb_tuto/dataimport.py a function which will read a file from a filepath and
create the corresponding entities, using a CubicWeb connection:

import csv

(continues on next page)

3.6. Create a Website from scratch with CubicWeb 89

https://data.culture.gouv.fr/explore/dataset/liste-et-localisation-des-musees-de-france/export/

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

def import_museums(cnx, filepath):
existing_cities = dict(cnx.execute("Any Z, C Where C is City, C zip_code Z"))
existing_cities_nb = len(existing_cities)
created_museum_nb = 0
with open(filepath) as fileobj:

reader = csv.DictReader(fileobj, delimiter=";")
for record in reader:

museum_name = record["NOM DU MUSEE"]
street = record["ADR"]
zip_code = record["CP"]
city_name = record["VILLE"]
try:

lat, lng = record["coordonnees_finales"].split(",")
lat_long = {

"latitude": lat,
"longitude": lng,

}
except (AttributeError, ValueError):

lat_long = {}
try:

city = existing_cities[zip_code]
except KeyError:

city = cnx.create_entity("City", name=city_name, zip_code=zip_code)
existing_cities[zip_code] = city.eid

cnx.create_entity(
"Museum",
name=museum_name,
postal_address=f"{street}, {zip_code} {city_name}",
is_in=city,
**lat_long,

)
created_museum_nb += 1

print(
"Import finished! {} existing cities, {} cities created, {} museums created.".

→˓format(
existing_cities_nb,
len(existing_cities) - existing_cities_nb,
created_museum_nb,

)
)

To be sure we don’t have several time the same city, we first query CubicWeb to ask for all existing city. To do this,
we use a specific language called RQL. As for SPARQL, it’s a query language designed to query linked data. See
Introduction for more information about it.

Then, we put existing cities in a dictionary, using zip code as key. In the real world, a zip code can concern several
cities, but it’s not really an issue in this tutorial.

For each line of our csv file, we will check if we already have the city in our base. If not, we create it. Then, we create
our Museum entity with all needed arguments.

To create an entity, we use the create_entity method of the CubicWeb connection. This method takes as first argument
the type of the entity (ie: the name of the corresponding class previously defined in tuto/cubicweb_tuto/schema.

90 Chapter 3. Tutorials

Cubicweb Documentation, Release 3.38.10

py), and then all arguments of the entity type.

In our example, a city needs a name and a zip code. A museum needs a name, a postal address, a latitude, a longitude
and a city. As is_in is a relation, we give to the corresponding argument the eid of the city.

Note: As we have defined Museum in the schema, we have to link each instance of Museum to a City, that’s why we
create the city before the museum, and give this city as argument of the museum.

If the city wasn’t mandatory, we could add it later, using:

museum_entity.cw_set(is_in=city)

To use our function we need to create a CubicWeb command that will call it. First, we create a file tuto/
cubicweb_tuto/ccplugin.py (the name doesn’t matter, but it is commonly used for all new CubicWeb commands).
Then, we write the following code:

from cubicweb.cwctl import CWCTL
from cubicweb.toolsutils import Command
from cubicweb.utils import admincnx

from cubicweb_tuto.dataimport import import_museums

@CWCTL.register
class ImportMuseums(Command):

"""
Import Museums and Cities from a CSV from:
https://data.culture.gouv.fr/explore/dataset/liste-et-localisation-des-musees-de-

→˓france/export/
"""

arguments = "<instance> <csv_file>"
name = "import-museums"
min_args = max_args = 2

def run(self, args):
appid, csv_file = args[:2]

with admincnx(appid) as cnx:
import_museums(cnx, csv_file)
cnx.commit()

• @CWCTL.register allows to register the command and then make it available with cubicweb-ctl command
by its name.

• arguments defines which arguments take our command.

• name defines the name of the command.

• with admincnx(appid) as cnx allows to have an admin access to our instance, and then be able to create
new entities.

Thus, to execute our import command, we just have to enter in our shell (within our virtual env):

cubicweb-ctl import-museums tuto_instance <path_to_the_csv>

3.6. Create a Website from scratch with CubicWeb 91

Cubicweb Documentation, Release 3.38.10

After this script, we should be able to see that we have much more cities and museums by visiting the homepage of our
CubicWeb instance:

RDF serialisation

Content negotiation

92 Chapter 3. Tutorials

CHAPTER

FOUR

SETUP AND ADMINISTRATION

This part is for installation and administration of the CubicWeb framework and instances based on that framework.

4.1 Install a CubicWeb environment

Official releases are available from the CubicWeb.org forge and from PyPI. Since CubicWeb is developed using Agile
software development techniques, releases happen frequently. In a version numbered X.Y.Z, X changes after a few
years when the API breaks, Y changes after a few weeks when features are added and Z changes after a few days when
bugs are fixed.

There are several ways to install CubicWeb depending on your needs:

• Using Docker

• In a virtualenv

• Using Pip

If you are a power-user and need the very latest features, you can choose the following methods:

• Downloading the source

• Using mercurial

Additional configuration can be found in the section Configure a CubicWeb environment for better control and advanced
features of CubicWeb.

4.1.1 Installing Dependencies

No matter your installation method, you will need to install the following Debian packages:

apt install gettext graphviz

gettext is used for translations (see Internationalization), and graphviz to display relation schemas within the web-
site.

93

https://forge.extranet.logilab.fr/cubicweb/cubicweb
http://pypi.python.org/pypi?%3Aaction=search&term=cubicweb&submit=search
http://en.wikipedia.org/wiki/Agile_software_development
http://en.wikipedia.org/wiki/Agile_software_development

Cubicweb Documentation, Release 3.38.10

4.1.2 Installing CubicWeb

Docker install

Detailed instructions on how to deploy CubicWeb using docker can be found on the docker hub.

Images are built using the source code available in the docker-cubicweb repository.

Virtualenv install

CubicWeb can be safely installed, used and contained inside a virtualenv. To create and activate a virtualenv, use the
following commands:

pip install --user virtualenv
virtualenv venv
source venv/bin/activate

Then you can use either pip or easy_install to install CubicWeb inside an activated virtual environment.

pip install

pip is a python tool that helps downloading, building, installing, and managing Python packages and their dependencies.
It is fully compatible with virtualenv and installs the packages from sources published on the The Python Package Index.

A working compilation chain is needed to build modules which include C extensions. If you really do not want to
compile anything, installing lxml, and libgecode will help.

For Debian, these minimal dependencies can be obtained by doing:

apt install gcc python3-pip python3-dev python3-lxml

or, if you prefer to get as much as possible from pip:

apt install gcc python3-pip python3-dev libxslt1-dev libxml2-dev

For Windows, you can install pre-built packages (possible source). For a minimal setup, install:

• pip http://www.lfd.uci.edu/~gohlke/pythonlibs/#pip

• setuptools http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools

• libxml-python http://www.lfd.uci.edu/~gohlke/pythonlibs/#libxml-python>

• lxml http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml

Make sure to choose the correct architecture and version of Python.

Finally, install CubicWeb and its dependencies by running:

pip install cubicweb

94 Chapter 4. Setup and Administration

https://hub.docker.com/r/logilab/cubicweb
https://forge.extranet.logilab.fr/cubicweb/docker-cubicweb/
https://virtualenv.pypa.io
https://virtualenv.pypa.io
https://pip.pypa.io/
https://virtualenv.pypa.io
https://pypi.org/
http://lxml.de/
http://www.gecode.org/
http://www.lfd.uci.edu/~gohlke/pythonlibs/
http://www.lfd.uci.edu/~gohlke/pythonlibs/#pip
http://www.lfd.uci.edu/~gohlke/pythonlibs/#setuptools
http://www.lfd.uci.edu/~gohlke/pythonlibs/#libxml-python
http://www.lfd.uci.edu/~gohlke/pythonlibs/#lxml

Cubicweb Documentation, Release 3.38.10

Install from source

You can download the archive containing the sources from CubicWeb forge downloads section.

Make sure you also have all the dependencies installed.

Once uncompressed, you can install the framework from inside the uncompressed folder with:

python3 setup.py install

Or you can run CubicWeb directly from the source directory by setting the resource mode to user. This will ease the
development with the framework.

Install from version control system

To keep-up with on-going development, clone the Mercurial repository:

hg clone -u 'last(tag())' https://forge.extranet.logilab.fr/cubicweb/cubicweb # stable␣
→˓version
hg clone https://forge.extranet.logilab.fr/cubicweb/cubicweb # development branch

Make sure you also have all the Installation dependencies.

4.1.3 Installing cubes

Many other cubes are available. Those cubes can help expanding the functionalities offered by CubicWeb. A list is
available at PyPI or at the CubicWeb.org forge.

For example the blog cube can be installed using:

pip install cubicweb-blog

4.2 Configure a CubicWeb environment

You can configure the database system of your choice:

• PostgreSQL configuration

• SQLite configuration

For advanced features, have a look to:

• Cubicweb resources configuration

4.2. Configure a CubicWeb environment 95

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/archive/branch/default/cubicweb-branch-default.zip
http://pypi.python.org/pypi?%3Aaction=search&term=cubicweb&submit=search
https://forge.extranet.logilab.fr/cubicweb/cubicweb
https://forge.extranet.logilab.fr/cubicweb/cubes/blog

Cubicweb Documentation, Release 3.38.10

4.2.1 Databases configuration

Each instance can be configured with its own database connection information, that will be stored in the instance’s
sources file. The database to use will be chosen when creating the instance. CubicWeb is known to run with Postgresql
(recommended) and SQLite.

Other possible sources of data include CubicWeb, LDAP and Mercurial, but at least one relational database is required
for CubicWeb to work. You do not need to install a backend that you do not intend to use for one of your instances.
SQLite is not fit for production use, but it works well for testing and ships with Python, which saves installation time
when you want to get started quickly.

PostgreSQL

Many Linux distributions ship with the appropriate PostgreSQL packages. Basically, you need to install the following
packages:

• postgresql and postgresql-client, which will pull the respective versioned packages (e.g. postgresql-9.1 and
postgresql-client-9.1) and, optionally,

• a postgresql-plpython-X.Y package with a version corresponding to that of the aforementioned packages (e.g.
postgresql-plpython-9.1). (Not needed now by default)

If you run postgres on another host than the CubicWeb repository, you should install the postgresql-client package on
the CubicWeb host, and others on the database host.

For extra details concerning installation, please refer to the PostgreSQL project online documentation.

Database cluster

If you already have an existing cluster and PostgreSQL server running, you do not need to execute the initilization
step of your PostgreSQL database unless you want a specific cluster for CubicWeb databases or if your existing cluster
doesn’t use the UTF8 encoding (see note below).

To initialize a PostgreSQL cluster, use the command initdb:

$ initdb -E UTF8 -D /path/to/pgsql

Note: initdb might not be in the PATH, so you may have to use its absolute path instead (usually something like
/usr/lib/postgresql/9.4/bin/initdb).

Notice the encoding specification. This is necessary since CubicWeb usually want UTF8 encoded database. If you use
a cluster with the wrong encoding, you’ll get error like:

new encoding (UTF8) is incompatible with the encoding of the template database (SQL_
→˓ASCII)
HINT: Use the same encoding as in the template database, or use template0 as template.

Once initialized, start the database server PostgreSQL with the command:

$ postgres -D /path/to/psql

If you cannot execute this command due to permission issues, please make sure that your username has write access
on the database.

$ chown username /path/to/pgsql

96 Chapter 4. Setup and Administration

http://www.postgresql.org/docs

Cubicweb Documentation, Release 3.38.10

Database authentication

The database authentication is configured in pg_hba.conf. It can be either set to ident sameuser or md5. If set to md5,
make sure to use an existing user of your database. If set to ident sameuser, make sure that your client’s operating
system user name has a matching user in the database. If not, please do as follow to create a user:

$ su
$ su - postgres
$ createuser -s -P <dbuser>

The option -P (for password prompt), will encrypt the password with the method set in the configuration file pg_hba.
conf. If you do not use this option -P, then the default value will be null and you will need to set it with:

$ su postgres -c "echo ALTER USER <dbuser> WITH PASSWORD '<dbpassword>' | psql"

The above login/password will be requested when you will create an instance with cubicweb-ctl create to initialize the
database of your instance.

Database creation

If you create the database by hand (instead of using the cubicweb-ctl db-create tool), you may want to make sure that
the local settings are properly set. For example, if you need to handle french accents properly for indexing and sorting,
you may need to create the database with something like:

$ createdb --encoding=UTF-8 --locale=fr_FR.UTF-8 -t template0 -O <owner> <dbname>

Notice that the cubicweb-ctl db-create does database initialization that may requires a postgres superuser. That’s why
a login/password is explicitly asked at this step, so you can use there a superuser without using this user when running
the instance. Things that require special privileges at this step:

• database creation, require the ‘create database’ permission

Where pgadmin is a postgres superuser.

SQLite

SQLite has the great advantage of requiring almost no configuration. Simply use ‘sqlite’ as db-driver, and set path to
the dabase as db-name. Don’t specify anything for db-user and db-password, they will be ignore anyway.

Note: SQLite is great for testing and to play with cubicweb but is not suited for production environments.

4.2.2 Cubicweb resources configuration

Resource mode

Standard resource mode

A resource mode is a predefined set of settings for various resources directories, such as cubes, instances, etc. to ease
development with the framework. There are two running modes with CubicWeb:

• system: resources are searched / created in the system directories (eg usually requiring root access):

4.2. Configure a CubicWeb environment 97

Cubicweb Documentation, Release 3.38.10

– instances are stored in <INSTALL_PREFIX>/etc/cubicweb.d

– temporary files (such as pid file) in <INSTALL_PREFIX>/var/run/cubicweb

where <INSTALL_PREFIX> is the detected installation prefix (‘/usr/local’ for instance).

• user: resources are searched / created in the user home directory:

– instances are stored in ~/etc/cubicweb.d

– temporary files (such as pid file) in /tmp

Within virtual environment

When installed within a virtualenv, CubicWeb will look for instances data as in user mode by default, that is in
$HOME/etc/cubicweb.d. However the CW_INSTANCES_DIR environment variable should be preferably used.

Custom resource location

Notice that each resource path may be explicitly set using an environment variable if the default doesn’t suit your needs.
Here are the default resource directories that are affected according to mode:

• system:

CW_INSTANCES_DIR = <INSTALL_PREFIX>/etc/cubicweb.d/
CW_INSTANCES_DATA_DIR = <INSTALL_PREFIX>/var/lib/cubicweb/instances/
CW_RUNTIME_DIR = <INSTALL_PREFIX>/var/run/cubicweb/

• user:

CW_INSTANCES_DIR = ~/etc/cubicweb.d/
CW_INSTANCES_DATA_DIR = ~/etc/cubicweb.d/
CW_RUNTIME_DIR = /tmp

Cubes search path is also affected, see the Cubes section.

Setting Cubicweb Mode

By default, the mode is set to ‘system’ for standard installation. The mode is set to ‘user’ if cubicweb is used from a
mercurial repository. You can force this by setting the CW_MODE environment variable to either ‘user’ or ‘system’ so
you can easily:

• use system wide installation but user specific instances and all, without root privileges on the system (export
CW_MODE=user)

• use local checkout of cubicweb on system wide instances (requires root privileges on the system (export
CW_MODE=system)

If you’ve a doubt about the mode you’re currently running, check the first line outputed by the cubicweb-ctl list
command.

98 Chapter 4. Setup and Administration

Cubicweb Documentation, Release 3.38.10

Development Mode (source)

If .hg directory is found into the cubicweb package, there are specific resource rules.

<CW_SOFTWARE_ROOT> is the source checkout’s cubicweb directory:

• cubicweb migration files are searched in <CW_SOFTWARE_ROOT>/misc/migration instead of <IN-
STALL_PREFIX>/share/cubicweb/migration/.

Development Mode (virtualenv)

If a virtualenv is found to be activated (i.e. a VIRTUAL_ENV variable is found in environment), the virtualenv root is
used as <INSTALL_PREFIX>. This, in particular, makes it possible to work in setuptools development mode (python
setup.py develop) without any further configuration.

Environment configuration

Python

If you installed CubicWeb by cloning the Mercurial shell repository or from source distribution, then you will need to
update the environment variable PYTHONPATH by adding the path to cubicweb:

Add the following lines to either .bashrc or .bash_profile to configure your development environment

export PYTHONPATH=/full/path/to/grshell-cubicweb

If you installed CubicWeb with packages, no configuration is required and your new cubes will be placed in
/usr/share/cubicweb/cubes and your instances will be placed in /etc/cubicweb.d.

CubicWeb

Here are all environment variables that may be used to configure CubicWeb:

CW_MODE

Resource mode: user or system, as explained in Resource mode.

CW_INSTANCES_DIR

Directory where cubicweb instances will be found.

CW_INSTANCES_DATA_DIR

Directory where cubicweb instances data will be written (backup file. . .)

CW_RUNTIME_DIR

Directory where pid files will be written

4.2. Configure a CubicWeb environment 99

https://pythonhosted.org/setuptools/setuptools.html#development-mode

Cubicweb Documentation, Release 3.38.10

4.3 Deploy a CubicWeb application

4.3.1 Deployment with uwsgi

uWSGI is often used to deploy CubicWeb applications.

Short version is install uwsgi:

apt install uwsgi

Deploy a configuration file for your application /etc/uwsgi/apps-enabled/example.ini. Don’t forget to replace example
with the instance name to deploy:

[uwsgi]
master = true
http = 0.0.0.0:8080
env = CW_INSTANCE=example
module = cubicweb.pyramid:wsgi_application()
processes = 2
threads = 8
plugins = http,python3
auto-procname = true
lazy-apps = true
log-master = true
disable-logging = true

You can run it manualliy with:

uwsgi --ini /etc/uwsgi/apps-enabled/example.ini

Apache configuration

It is possible to use apache (for example) as proxy in front of uwsgi.

For this to work you have to activate the following apache modules :

• rewrite

• proxy

• http_proxy

The command on Debian based systems for that is

a2enmod rewrite http_proxy proxy
/etc/init.d/apache2 restart

Example For an apache redirection of a site accessible via http://localhost/demo while cubicweb is actu-
ally running on port 8080::

ProxyPreserveHost On
RewriteEngine On
RewriteCond %{REQUEST_URI} ^/demo
RewriteRule ^/demo$ /demo/
RewriteRule ^/demo/(.*) http://127.0.0.1:8080/$1 [L,P]

100 Chapter 4. Setup and Administration

https://uwsgi-docs.readthedocs.io/

Cubicweb Documentation, Release 3.38.10

and we will configure the base-url in the all-in-one.conf of the instance::

base-url = http://localhost/demo

4.3.2 Deployment with SaltStack

To deploy with SaltStack one can refer themselves to the cubicweb-formula.

4.3.3 Deployment with Docker

To deploy in a docker container cluster, you should use our docker image. The source code is also in the forge. For a
standard cube with no apt dependencies, the following dockerfile is fine:

FROM logilab/cubicweb:3.29
USER root
COPY . /src
RUN pip install -e /src
USER cubicweb
RUN docker-cubicweb-helper create-instance

To run your instance, don’t forget the port redirection and change the image name:

docker run --rm -it -p 8080:8080 example:latest

If you need to customize the variables in the files all-in-one.conf or sources, you should pass them as environ-
nement variables. For example, the database name is read from CW_DB_NAME. The admin password is read from
CW_PASSWORD. Also if the database is on the host, it has to be accessible from the container:

docker run --rm -it -p 8080:8080 --env-file ./.env -v /var/run/postgresql:/var/run/
→˓postgresql example:latest

If your instance needs a scheduler, it has to be run in a separate container from the same image:

docker run --rm -it --env-file ./.env -v /var/run/postgresql:/var/run/postgresql␣
→˓example:latest cubicweb-ctl scheduler instance

Don’t forget to change the image name example:latest and the instance name name.

4.3.4 Deployment with Kubernetes

To deploy in a Kubernetes cluster, you can take inspiration from the deploy instructions included in the fresh cube. It
includes nginx to serve static files, one container for the application and one for the scheduler and also an initContainer
to automatically upgrade the database in case of new version.

4.3. Deploy a CubicWeb application 101

https://hg.logilab.org/master/salt/cubicweb-formula/
https://hub.docker.com/r/logilab/cubicweb
https://forge.extranet.logilab.fr/cubicweb/docker-cubicweb
https://forge.extranet.logilab.fr/cubicweb/cubes/fresh/-/blob/branch/default/deploy/deployment.yaml
https://forge.extranet.logilab.fr/cubicweb/cubes/fresh
https://kubernetes.io/docs/concepts/workloads/pods/init-containers/

Cubicweb Documentation, Release 3.38.10

4.4 cubicweb-ctl tool

cubicweb-ctl is the swiss knife to manage CubicWeb instances. The general syntax is

cubicweb-ctl <command> [options command] <arguments commands>

To view available commands

cubicweb-ctl
cubicweb-ctl --help

Please note that the commands available depends on the CubicWeb packages and cubes that have been installed.

To view the help menu on specific command

cubicweb-ctl <command> --help

4.4.1 Listing available cubes and instance

• list, provides a list of the available configuration, cubes and instances.

4.4.2 Creation of a new cube

Create your new cube cube

cubicweb-ctl newcube -d <target directory>

This will create a new cube <target directory>.

4.4.3 Create an instance

You must ensure ~/etc/cubicweb.d/ exists prior to this. On windows, the ‘~’ part will probably expand to ‘Documents
and Settings/user’.

To create an instance from an existing cube, execute the following command

cubicweb-ctl create <cube_name> <instance_name>

This command will create the configuration files of an instance in ~/etc/cubicweb.d/<instance_name>.

The tool cubicweb-ctl executes the command db-create and db-init when you run create so that you can
complete an instance creation in a single command. But of course it is possible to issue these separate commands
separately, at a later stage.

102 Chapter 4. Setup and Administration

Cubicweb Documentation, Release 3.38.10

4.4.4 Command to create/initialize an instance database

• db-create, creates the system database of an instance (tables and extensions only)

• db-init, initializes the system database of an instance (schema, groups, users, workflows. . .)

4.4.5 Run an instance

To start an instance during development, use

cubicweb-ctl pyramid [-D] [-l <log-level>] <instance-id>

without -D, the instance will be start in the background, as a daemon.

See The ‘pyramid’ command for more details.

In production, it is recommended to run CubicWeb through a WSGI server like uWSGI or Gunicorn. See cubicweb.
pyramid more details.

4.4.6 Commands to maintain instances

• upgrade, launches the existing instances migration when a new version of CubicWeb or the cubes installed is
available

• shell, opens a (Python based) migration shell for manual maintenance of the instance

• db-dump, creates a dump of the system database

• db-restore, restores a dump of the system database

• db-check, checks data integrity of an instance. If the automatic correction is activated, it is recommanded to
create a dump before this operation.

• schema-sync, synchronizes the persistent schema of an instance with the instance schema. It is recommanded
to create a dump before this operation.

4.4.7 Commands to maintain i18n catalogs

• i18ncubicweb, regenerates messages catalogs of the CubicWeb library

• i18ncube, regenerates the messages catalogs of a cube

• i18ninstance, recompiles the messages catalogs of an instance. This is automatically done while upgrading.

See also chapter Internationalization.

4.4.8 Other commands

• delete, deletes an instance (configuration files and database)

4.4. cubicweb-ctl tool 103

Cubicweb Documentation, Release 3.38.10

4.5 Creation of your first instance

4.5.1 Instance creation

Now that we created a cube, we can create an instance and access it via a web browser. We will use a all-in-one
configuration to simplify things

cubicweb-ctl create -c all-in-one mycube myinstance

Note: Please note that we created a new cube for a demo purposes but you could have used an existing cube available
in our standard library such as blog or person for example.

A series of questions will be prompted to you, the default answer is usually sufficient. You can anyway modify the
configuration later on by editing configuration files. When a login/password are requested to access the database please
use the credentials you created at the time you configured the database (PostgreSQL).

It is important to distinguish here the user used to access the database and the user used to login to the cubicweb
instance. When an instance starts, it uses the login/password for the database to get the schema and handle low level
transaction. But, when cubicweb-ctl create asks for a manager login/psswd of CubicWeb, it refers to the user you
will use during the development to administrate your web instance. It will be possible, later on, to use this user to create
other users for your final web instance.

4.5.2 Instance administration

start / stop

When this command is completed, the definition of your instance is located in ~/etc/cubicweb.d/myinstance/*.
To launch it, you just type

cubicweb-ctl pyramid -D myinstance

The option -D specifies the debug mode : the instance is not running in server mode and does not disconnect from
the terminal, which simplifies debugging in case the instance is not properly launched. You can see how it looks
by visiting the URL http://localhost:8080 (the port number depends of your configuration). To login, please use the
cubicweb administrator login/password you defined when you created the instance.

To shutdown the instance, Crtl-C in the terminal window is enough. If you did not use the option -D, then type

cubicweb-ctl stop myinstance

This is it! All is settled down to start developping your data model. . .

Note: The output of cubicweb-ctl pyramid -D myinstance can be overwhelming. It is possible to reduce the log level
with the –loglevel parameter as in cubicweb-ctl pyramid -D myinstance -l info to filter out all logs under info gravity.

104 Chapter 4. Setup and Administration

Cubicweb Documentation, Release 3.38.10

upgrade

A manual upgrade step is necessary whenever a new version of CubicWeb or a cube is installed, in order to synchronise
the instance’s configuration and schema with the new code. The command is:

cubicweb-ctl upgrade myinstance

A series of questions will be asked. It always starts with a proposal to make a backup of your sources (where it applies).
Unless you know exactly what you are doing (i.e. typically fiddling in debug mode, but definitely NOT migrating a
production instance), you should answer YES to that.

The remaining questions concern the migration steps of CubicWeb, then of the cubes that form the whole application,
in reverse dependency order.

In principle, if the migration scripts have been properly written and tested, you should answer YES to all questions.

Somtimes, typically while debugging a migration script, something goes wrong and the migration fails. Unfortunately
the databse may be in an incoherent state. You have two options here:

• fix the bug, restore the database and restart the migration process from scratch (quite recommended in a produc-
tion environement)

• try to replay the migration up to the last successful commit, that is answering NO to all questions up to the step
that failed, and finish by answering YES to the remaining questions.

4.6 Configure an instance

While creating an instance, a configuration file is generated in:

$ (CW_INSTANCES_DIR) / <instance> / <configuration name>.conf

For example:

/etc/cubicweb.d/myblog/all-in-one.conf

It is a simple text file in the INI format (http://en.wikipedia.org/wiki/INI_file). In the following description, each option
name is prefixed with its own section and followed by its default value if necessary, e.g. “<section>.<option> [value].”

Note: At runtime, configuration options can be overriden by environments variables which name follows the option
name with - replaced by _ and a CW_ prefix. For instance CW_BASE_URL=https://www.example.comwould override
the base-url configuration option.

4.6.1 Configuring the Web server

web.auth-model [cookie] authentication mode, cookie or http

web.realm realm of the instance in http authentication mode

web.http-session-time [0] period of inactivity of an HTTP session before it closes automatically. Duration
in seconds, 0 meaning no expiration (or more exactly at the closing of the browser client)

main.anonymous-user, main.anonymous-password login and password to use to connect to the RQL
server with HTTP anonymous connection. CWUser account should exist.

main.base-url url base site to be used to generate the urls of web pages

4.6. Configure an instance 105

http://en.wikipedia.org/wiki/INI_file

Cubicweb Documentation, Release 3.38.10

4.6.2 Setting up the web client

web.embed-allowed regular expression matching sites which could be “embedded” in the site (controllers
‘embed’)

web.submit-url url where the bugs encountered in the instance can be mailed to

4.6.3 RQL server configuration

main.host host name if it can not be detected correctly

main.pid-file file where will be written the server pid

main.uid user account to use for launching the server when it is root launched by init

main.session-time [30*60] timeout of a RQL session

main.query-log-file file where all requests RQL executed by the server are written

4.6.4 Configuring e-mail

RQL and web server side:

email.mangle-mails [no] indicates whether the email addresses must be displayed as is or transformed

RQL server side:

email.smtp-host [mail] hostname hosting the SMTP server to use for outgoing mail

email.smtp-port [25] SMTP server port to use for outgoing mail

email.smtp-username SMTP server username for authenticated email sending

email.smtp-password SMTP server password for authenticated email sending

email.sender-name name to use for outgoing mail of the instance

email.sender-addr address for outgoing mail of the instance

email.default dest-addrs destination addresses by default, if used by the configuration of the dissemina-
tion of the model (separated by commas)

email.supervising-addrs destination addresses of e-mails of supervision (separated by commas)

4.6.5 Configuring logging

main.log-threshold level of filtering messages (DEBUG, INFO, WARNING, ERROR)

main.log-file file to write messages

106 Chapter 4. Setup and Administration

Cubicweb Documentation, Release 3.38.10

4.6.6 Configuring persistent properties

Other configuration settings are in the form of entities CWProperty in the database. It must be edited via the web
interface or by RQL queries.

ui.encoding Character encoding to use for the web

navigation.short-line-size number of characters for “short” display

navigation.page-size maximum number of entities to show per results page

navigation.related-limit number of related entities to show up on primary entity view

navigation.combobox-limit number of entities unrelated to show up on the drop-down lists of the sight
on an editing entity view

4.6.7 Cross-Origin Resource Sharing

CubicWeb’s support for the CORS protocol is provided by the wsgicors middleware at the Pyramid level. For now, the
provided implementation only deals with access to a CubicWeb instance as a whole. Support for a finer granularity
may be considered in the future.

A few parameters can be set to configure the CORS capabilities of CubicWeb, the values are passed to the wsgi-
cors.CORS() middleware constructor, hence the wsgicors documentation can be used for more details.

access-control-allow-origin comma-separated list of allowed origin domains or “*” for any domain

access-control-allow-methods comma-separated list of allowed HTTP methods

access-control-allow-headers comma-separated list of allowed HTTP custom headers (used in simple
requests)

access-control-expose-headers comma-separated list of allowed HTTP custom headers (used in preflight
requests)

access-control-max-age maximum age of cross-origin resource sharing (in seconds)

credentials is always set to true and is not configurable.

4.6. Configure an instance 107

http://www.w3.org/TR/cors/
https://pypi.org/project/wsgicors/
http://www.w3.org/TR/cors/

Cubicweb Documentation, Release 3.38.10

4.7 User interface for web site configuration

This panel allows you to configure the appearance of your instance site. Six menus are available and we will go through
each of them to explain how to use them.

4.7.1 Navigation

This menu provides you a way to adjust some navigation options depending on your needs, such as the number of
entities to display by page of results. Follows the detailled list of available options :

• navigation.combobox-limit : maximum number of entities to display in related combo box (sample format: 23)

• navigation.page-size : maximum number of objects displayed by page of results (sample format: 23)

• navigation.related-limit : maximum number of related entities to display in the primary view (sample format:
23)

• navigation.short-line-size : maximum number of characters in short description (sample format: 23)

4.7.2 UI

This menu provides you a way to customize the user interface settings such as date format or encoding in the produced
html. Follows the detailled list of available options :

• ui.date-format : how to format date in the ui (“man strftime” for format description)

• ui.datetime-format : how to format date and time in the ui (“man strftime” for format description)

• ui.default-text-format : default text format for rich text fields.

• ui.encoding : user interface encoding

• ui.fckeditor :should html fields being edited using fckeditor (a HTML WYSIWYG editor). You should also select
text/html as default text format to actually get fckeditor.

• ui.float-format : how to format float numbers in the ui

108 Chapter 4. Setup and Administration

Cubicweb Documentation, Release 3.38.10

• ui.language : language of the user interface

• ui.main-template : id of main template used to render pages

• ui.site-title : site title, which is displayed right next to the logo in the header

• ui.time-format : how to format time in the ui (“man strftime” for format description)

4.7.3 Actions

This menu provides a way to configure the context in which you expect the actions to be displayed to the user and if
you want the action to be visible or not. You must have notice that when you view a list of entities, an action box is
available on the left column which display some actions as well as a drop-down menu for more actions.

The context available are :

• mainactions : actions listed in the left box

• moreactions : actions listed in the more menu of the left box

• addrelated : add actions listed in the left box

• useractions : actions listed in the first section of drop-down menu accessible from the right corner user login link

• siteactions : actions listed in the second section of drop-down menu accessible from the right corner user login
link

• hidden : select this to hide the specific action

4.7.4 Boxes

The instance has already a pre-defined set of boxes you can use right away. This configuration section allows you to
place those boxes where you want in the instance interface to customize it.

The available boxes are :

• actions box : box listing the applicable actions on the displayed data

• boxes_blog_archives_box : box listing the blog archives

• possible views box : box listing the possible views for the displayed data

• rss box : RSS icon to get displayed data as a RSS thread

• search box : search box

• startup views box : box listing the configuration options available for the instance site, such as Preferences and
Site Configuration

4.7.5 Components

[WRITE ME]

4.7. User interface for web site configuration 109

Cubicweb Documentation, Release 3.38.10

4.7.6 Contextual components

[WRITE ME]

4.8 Multiple sources of data

Data sources include SQL, LDAP, RQL, mercurial and subversion.

4.9 LDAP integration

4.9.1 Overview

Using LDAP as a source for user credentials and information is quite easy. The most difficult part lies in building an
LDAP schema or using an existing one.

At cube creation time, one is asked if more sources are wanted. LDAP is one possible option at this time. Of course,
it is always possible to set it up later using the CWSource entity type, which we discuss there.

It is possible to add as many LDAP sources as wanted, which translates in as many CWSource entities as needed.

The general principle of the LDAP source is, given a proper configuration, to create local users matching the users
available in the directory and deriving local user attributes from directory users attributes. Then a periodic task ensures
local user information synchronization with the directory.

Users handled by such a source should not be edited directly from within the application instance itself. Rather, updates
should happen at the LDAP server level.

Credential checks are _always_ done against the LDAP server.

Note: There are currently two ldap source types: the older ldapuser and the newer ldapfeed. The older will be
deprecated anytime soon, as the newer has now gained all the features of the old and does not suffer from some of its
illnesses.

The ldapfeed creates real CWUser entities, and then activate/deactivate them depending on their presence/absence in
the corresponding LDAP source. Their attribute and state (activated/deactivated) are hence managed by the source
mechanism; they should not be altered by other means (as such alterations may be overridden in some subsequent
source synchronisation).

4.9.2 Configuration of an LDAPfeed source

Additional sources are created at cube creation time or later through the user interface.

Configure an ldapfeed source from the user interface under Manage then data sources:

• At this point type has been set to ldapfeed.

• The parser attribute shall be set to ldapfeed.

• The url attribute shall be set to an URL such as ldap://ldapserver.domain/.

• The configuration attribute contains many options. They are described in detail in the next paragraph.

110 Chapter 4. Setup and Administration

ldap://ldapserver.domain/

Cubicweb Documentation, Release 3.38.10

4.9.3 Options of an LDAPfeed source

Let us enumerate the options by categories (LDAP server connection, LDAP schema mapping information).

LDAP server connection options:

• auth-mode, (choices are simple, cram_md5, digest_md5, gssapi, support for the later being partial as of now)

• auth-realm, realm to use when using gssapi/kerberos authentication

• data-cnx-dn, user dn to use to open data connection to the ldap (eg used to respond to rql queries)

• data-cnx-password, password to use to open data connection to the ldap (eg used to respond to rql queries)

• start-tls, starting TLS before bind (valid values: “true”, “false”)

If the LDAP server accepts anonymous binds, then it is possible to leave data-cnx-dn and data-cnx-password empty.
This is, however, quite unlikely in practice. Beware that the LDAP server might hide attributes such as “userPassword”
while the rest of the attributes remain visible through an anonymous binding.

LDAP schema mapping options:

• user-base-dn, base DN to lookup for users

• user-scope, user search scope (valid values: “BASE”, “ONELEVEL”, “SUBTREE”)

• user-classes, classes of user (with Active Directory, you want to say “user” here)

• user-filter, additional filters to be set in the ldap query to find valid users

• user-login-attr, attribute used as login on authentication (with Active Directory, you want to use “sAMAccount-
Name” here)

• user-default-group, name of a group in which ldap users will be by default. You can set multiple groups by
separating them by a comma

• user-attrs-map, map from ldap user attributes to cubicweb attributes (with Active Directory, you want to use
sAMAccountName:login,mail:email,givenName:firstname,sn:surname)

4.9.4 Other notes

• Cubicweb is able to start if ldap cannot be reached. . . If some source ldap server cannot be used while an instance
is running, the corresponding users won’t be authenticated but their status will not change (e.g. they will not be
deactivated)

• The user-base-dn is a key that helps cubicweb map CWUsers to LDAP users: beware updating it

• When a user is removed from an LDAP source, it is deactivated in the CubicWeb instance; when a deactivated
user comes back in the LDAP source, it (automatically) is activated again

• You can use the CWSourceHostConfig to have variants for a source configuration according to the host the
instance is running on. To do so go on the source’s view from the sources management view.

4.9. LDAP integration 111

Cubicweb Documentation, Release 3.38.10

4.10 RQL logs

You can configure the CubicWeb instance to keep a log of the queries executed against your database. To do so, edit the
configuration file of your instance .../etc/cubicweb.d/myapp/all-in-one.conf and uncomment the variable
query-log-file:

web instance query log file
query-log-file=/tmp/rql-myapp.log

112 Chapter 4. Setup and Administration

CHAPTER

FIVE

BACKEND DEVELOPMENT

This part is about developing applications with the CubicWeb framework. It is not concerned with the web system,
which is a separate layer and has its own whole chapter.

5.1 Cubes

This chapter describes how to define your own cubes and reuse already available cubes.

5.1.1 What is a Cube?

A cube is the equivalent of a module or a component but for CubicWeb. A website made with CubicWeb is generally
an instance based on a cube that is just an assembly of already existing cubes with some domain specific logics. If you
need a functionality that is not available, then you write a new Cube for it (and hopefully share it with the community).

A cube is made of mainly four parts:

• its data model stored in schema.py,

• its logic added to the data stored in entities

• its logic concerning dataflow stored in hooks,

• its user interface stored in views.

A cube can also define:

• its internationalization stored in the i18n/,

• new cubicweb commands stored in ccplugin.py.

A cube can use other cubes as building blocks and assemble them to provide a whole with richer functionnalities
than its parts. The cubes cubicweb-blog and cubicweb-comment could be used to make a cube named myblog with
commentable blog entries.

The CubicWeb.org Forge offers a large number of cubes developed by the community and available under a free software
license. They are designed with the KISS principle as each cube usually adds a single functionality. Usually an
application is an instance based on a regular cube that is just an assembly of existing cubes with some specific logics.

Note: The command cubicweb-ctl list displays the list of available cubes.

113

https://forge.extranet.logilab.fr/cubicweb/cubes/blog
https://forge.extranet.logilab.fr/cubicweb/cubes/comment
https://forge.extranet.logilab.fr/cubicweb/cubicweb
https://en.wikipedia.org/wiki/KISS_principle

Cubicweb Documentation, Release 3.38.10

5.1.2 Standard structure for a cube

A cube named “mycube” is a Python package “cubicweb-mycube” structured as follows:

cubicweb-mycube/
cubicweb_mycube

data
entities.py
hooks.py
i18n

de.po
en.po
es.po
fr.po

__init__.py
migration

postcreate.py
__pkginfo__.py
schema.py
views.py

cubicweb-mycube.spec
MANIFEST.in
README.rst
setup.py
test

data
bootstrap_cubes

__pycache__
test_mycube.py

tox.ini

We can use subpackages instead of Python modules for views.py, entities.py, schema.py or hooks.py. For
example, we could have:

cubicweb-mycube/
|
|-- cubicweb_mycube/
| |

|-- entities.py
. |-- hooks.py
. `-- views/
. |-- __init__.py

|-- forms.py
|-- primary.py
`-- widgets.py

where :

• schema contains the schema definition (server side only)

• entities contains the entity definitions (server side and web interface)

• hooks contains hooks and/or views notifications (server side only)

• views contains the web interface components (web interface only)

• test contains tests related to the cube

114 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• i18n contains message catalogs for supported languages (server side and web interface)

• data contains data files for static content (images, css, javascript code). . . (web interface only)

• migration contains initialization files for new instances (postcreate.py) and a file containing dependencies
of the component depending on the version (depends.map)

• file __pkginfo__.py provides component meta-data, especially the distribution and the current version (server
side and web interface) or sub-cubes used by the cube.

At least you should have the file __pkginfo__.py.

The site_cubicweb.py files

It contains the definition of cube options that are customisable through all-in-one.conf . This should define the attribute
options :

-*- coding: utf-8 -*-
cubicweb-mycube/cubicweb_mycube/site_cubicweb.py

options = (
('example-option-name-1',
{'type': 'string',
'default': 'Default value',
'help': 'Some text explaining the usage of this option.',
'group': 'cubicweb_mycube',
'level': 2,
}),

)

The options format are defined in logilab common. The options attribute should be a list of ('option-name',
option-value). The value should be dict with the following entries:

• type: available types are : string, int, float, file, font, color, regexp, csv, yn (yes/no), bool, named, password,
date, time, bytes, choice and multiple_choice.

• default: the default value of the option.

• help: the message to print as a help message.

• group: the section where the option should be stored in the all-in-one.conf.

• level: the verbosity at which the help should be displayed.

This is useful to add token configuration or endpoint, see for example sentry or seo.

When modifying this, don’t forget to add a migration script.

5.1. Cubes 115

https://logilab-common.readthedocs.io/en/latest/logilab.common.html#module-logilab.common.configuration
https://forge.extranet.logilab.fr/cubicweb/cubes/sentry
https://forge.extranet.logilab.fr/cubicweb/cubes/seo

Cubicweb Documentation, Release 3.38.10

The __pkginfo__.py file

It contains metadata describing your cube, mostly useful for packaging.

Two important attributes of this module are __depends__ and __recommends__ dictionaries that indicates what should
be installed (and each version if necessary) for the cube to work.

Dependency on other cubes are expected to be of the form ‘cubicweb-<cubename>’.

When an instance is created, dependencies are automatically installed, while recommends are not.

Recommends may be seen as a kind of ‘weak dependency’. Eg, the most important effect of recommending a cube is
that, if cube A recommends cube B, the cube B will be loaded before the cube A (same thing happend when A depends
on B).

Having this behaviour is sometime desired: on schema creation, you may rely on something defined in the other’s
schema; on database creation, on something created by the other’s postcreate, and so on.

5.1.3 The setup.py file

This is standard setuptools based setup module which reads most of its data from __pkginfo__.py. In the setup
function call, it should also include an entry point definition under the cubicweb.cubes group so that CubicWeb can
discover cubes (in particular their custom cubicweb-ctl commands):

setup(
...
entry_points={

'cubicweb.cubes': [
'mycube=cubicweb_mycube',

],
},
...

)

The __init__.py file

The first purpose of this file is to define the cube as a python module.

Furthermore, this file is, by default, the starting point of pyramid mechanism of inclusion for routes, views, predicates,
etc. During initialization, Pyramid will check for the includeme function in this file. See the documentation of pyramid.

migration/precreate.py and migration/postcreate.py

The precreate script is executed at instance creation time or when the cube is added to an existing instance, before the
schema is serialized. This is typically to create groups referenced by the cube’schema.

The postcreate script, executed at instance creation time or when the cube is added to an existing instance. You could
setup site properties or a workflow here for example.

More information : :doc:`see migration description <book/devrepo/migration.rst>`_

116 Chapter 5. Backend Development

https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/extconfig.html#adding-methods-to-the-configurator-via-add-directive

Cubicweb Documentation, Release 3.38.10

External resources such as image, javascript and css files

Out-of the box testing

Packaging and distribution

5.1.4 Creating a new cube from scratch

Let’s start by creating the cube environment in which we will develop

cd ~/myproject
use cubicweb-ctl to generate a template for the cube
will ask some questions, most with nice default
cubicweb-ctl newcube mycube
makes the cube source code managed by mercurial
cd cubicweb-mycube
hg init
hg add .
hg ci

If all went well, you should see the cube you just created in the list returned by cubicweb-ctl list in the Available
cubes section. If not, please refer to Environment configuration.

To reuse an existing cube, add it to the list named __depends_cubes__ which is defined in __pkginfo__.py. This
variable is used for the instance packaging (dependencies handled by system utility tools such as APT) and to find used
cubes when the database for the instance is created.

5.1.5 Available cubes

An instance is made of several basic cubes. In the set of available basic cubes we can find for example:

Base entity types

• addressbook: PhoneNumber and PostalAddress

• card: Card, generic documenting card

• event: Event (define events, display them in calendars)

• file: File (to allow users to upload and store binary or text files)

• link: Link (to collect links to web resources)

• mailinglist: MailingList (to reference a mailing-list and the URLs for its archives and its admin interface)

• person: Person (easily mixed with addressbook)

• task: Task (something to be done between start and stop date)

• zone: Zone (to define places within larger places, for example a city in a state in a country)

5.1. Cubes 117

https://forge.extranet.logilab.fr/cubicweb/cubes/addressbook
https://forge.extranet.logilab.fr/cubicweb/cubes/card
https://forge.extranet.logilab.fr/cubicweb/cubes/event
https://forge.extranet.logilab.fr/cubicweb/cubes/file
https://forge.extranet.logilab.fr/cubicweb/cubes/link
https://forge.extranet.logilab.fr/cubicweb/cubes/mailinglist
https://forge.extranet.logilab.fr/cubicweb/cubes/person
https://forge.extranet.logilab.fr/cubicweb/cubes/task
https://forge.extranet.logilab.fr/cubicweb/cubes/zone

Cubicweb Documentation, Release 3.38.10

Classification

• folder: Folder (to organize things by grouping them in folders)

• keyword: Keyword (to define classification schemes)

• tag: Tag (to tag anything)

Other features

• basket: Basket (like a shopping cart)

• blog: a blogging system using Blog and BlogEntry entity types

• comment: system to attach comment threads to entities)

• email: archiving management for emails (Email, Emailpart, Emailthread), trigger action in cubicweb through
email

To declare the use of a cube, once installed, add the name of the cube and its dependency relation in the __de-
pends_cubes__ dictionary defined in the file __pkginfo__.py of your own component.

5.2 The Registry, selectors and application objects

This chapter deals with some of the core concepts of the CubicWeb framework which make it different from other
frameworks (and maybe not easy to grasp at a first glance). To be able to do advanced development with CubicWeb
you need a good understanding of what is explained below.

This chapter goes deep into details. You don’t have to remember them all but keep it in mind so you can go back there
later.

An overview of AppObjects, the VRegistry and Selectors is given in the Registries and application objects chapter.

5.2.1 The CWRegistryStore

The CWRegistryStore can be seen as a two-level dictionary. It contains all dynamically loaded objects (subclasses
of AppObject) to build a CubicWeb application. Basically:

• the first level key returns a registry. This key corresponds to the __registry__ attribute of application object
classes

• the second level key returns a list of application objects which share the same identifier. This key corresponds to
the __regid__ attribute of application object classes.

A registry holds a specific kind of application objects. There is for instance a registry for entity classes, another for
views, etc. . .

The CWRegistryStore has two main responsibilities:

• being the access point to all registries

• handling the registration process at startup time, and during automatic reloading in debug mode.

118 Chapter 5. Backend Development

https://forge.extranet.logilab.fr/cubicweb/cubes/folder
https://forge.extranet.logilab.fr/cubicweb/cubes/keyword
https://forge.extranet.logilab.fr/cubicweb/cubes/tag
https://forge.extranet.logilab.fr/cubicweb/cubes/basket
https://forge.extranet.logilab.fr/cubicweb/cubes/blog
https://forge.extranet.logilab.fr/cubicweb/cubes/comment
https://forge.extranet.logilab.fr/cubicweb/cubes/email

Cubicweb Documentation, Release 3.38.10

Details of the recording process

On startup, CubicWeb loads application objects defined in its library and in cubes used by the instance. Application
objects from the library are loaded first, then those provided by cubes are loaded in dependency order (e.g. if your cube
depends on an other, objects from the dependency will be loaded first). The layout of the modules or packages in a
cube is explained in Standard structure for a cube.

For each module:

• by default all objects are registered automatically

• if some objects have to replace other objects, or have to be included only if some condition is met, you’ll have to
define a registration_callback(vreg) function in your module and explicitly register all objects in this module,
using the api defined below.

Note: Once the function registration_callback(vreg) is implemented in a module, all the objects from this module
have to be explicitly registered as it disables the automatic objects registration.

API for objects registration

Here are the registration methods that you can use in the registration_callback to register your objects to the
CWRegistryStore instance given as argument (usually named vreg):

• register_all()

• register_and_replace()

• register()

• unregister()

Examples:

web/views/basecomponents.py
def registration_callback(vreg):
register everything in the module except SeeAlsoComponent
vreg.register_all(globals().itervalues(), __name__, (SeeAlsoVComponent,))
conditionally register SeeAlsoVComponent
if 'see_also' in vreg.schema:

vreg.register(SeeAlsoVComponent)

In this example, we register all application object classes defined in the module except SeeAlsoVComponent. This class
is then registered only if the ‘see_also’ relation type is defined in the instance’schema.

goa/appobjects/sessions.py
def registration_callback(vreg):

vreg.register(SessionsCleaner)
replace AuthenticationManager by GAEAuthenticationManager
vreg.register_and_replace(GAEAuthenticationManager, AuthenticationManager)
replace PersistentSessionManager by GAEPersistentSessionManager
vreg.register_and_replace(GAEPersistentSessionManager, PersistentSessionManager)

In this example, we explicitly register classes one by one:

• the SessionCleaner class

• the GAEAuthenticationManager to replace the AuthenticationManager

5.2. The Registry, selectors and application objects 119

Cubicweb Documentation, Release 3.38.10

• the GAEPersistentSessionManager to replace the PersistentSessionManager

If at some point we register a new appobject class in this module, it won’t be registered at all without modification
to the registration_callback implementation. The previous example will register it though, thanks to the call to the
register_all method.

Runtime objects selection

Now that we have all application objects loaded, the question is : when I want some specific object, for instance the
primary view for a given entity, how do I get the proper object ? This is what we call the selection mechanism.

As explained in the The Core Concepts of CubicWeb section:

• each application object has a selector, defined by its __select__ class attribute

• this selector is responsible to return a score for a given context

– 0 score means the object doesn’t apply to this context

– else, the higher the score, the better the object suits the context

• the object with the highest score is selected.

Note: When no single object has the highest score, an exception is raised in development mode to let you know that
the engine was not able to identify the view to apply. This error is silenced in production mode and one of the objects
with the highest score is picked.

In such cases you would need to review your design and make sure your selectors or appobjects are properly defined.
Such an error is typically caused by either forgetting to change the __regid__ in a derived class, or by having copy-pasted
some code.

For instance, if you are selecting the primary (__regid__ = ‘primary’) view (__registry__ = ‘views’) for a result set
containing a Card entity, two objects will probably be selectable:

• the default primary view (__select__ = is_instance(‘Any’)), meaning that the object is selectable for any kind of
entity type

• the specific Card primary view (__select__ = is_instance(‘Card’), meaning that the object is selectable for Card
entities

Other primary views specific to other entity types won’t be selectable in this case. Among selectable objects, the
is_instance(‘Card’) selector will return a higher score since it’s more specific, so the correct view will be selected as
expected.

API for objects selections

Here is the selection API you’ll get on every registry. Some of them, as the ‘etypes’ registry, containing entity classes,
extend it. In those methods, *args, **kwargs is what we call the context. Those arguments are given to selectors that
will inspect their content and return a score accordingly.

select()

select_or_none()

possible_objects()

object_by_id()

120 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

5.2.2 The AppObject class

The cubicweb.appobject.AppObject class is the base class for all dynamically loaded objects (application objects)
accessible through the cubicweb.cwvreg.CWRegistryStore.

5.2.3 Predicates and selectors

Predicates are scoring functions that are called by the registry to tell whenever an appobject can be selected in a given
context. Predicates may be chained together using operators to build a selector. A selector is the glue that tie views
to the data model or whatever input context. Using them appropriately is an essential part of the construction of well
behaved cubes.

Of course you may have to write your own set of predicates as your needs grows and you get familiar with the framework
(see Defining your own predicates).

A predicate is a class testing a particular aspect of a context. A selector is built by combining existant predicates or
even selectors.

Using and combining existant predicates

You can combine predicates using the &, | and ~ operators.

When two predicates are combined using the & operator, it means that both should return a positive score. On success,
the sum of scores is returned.

When two predicates are combined using the | operator, it means that one of them should return a positive score. On
success, the first positive score is returned.

You can also “negate” a predicate by precedeing it by the ~ unary operator.

Of course you can use parenthesis to balance expressions.

Example

The goal: when on a blog, one wants the RSS link to refer to blog entries, not to the blog entity itself.

To do that, one defines a method on entity classes that returns the RSS stream url for a given entity. The default
implementation on AnyEntity (the generic entity class used as base for all others) and a specific implementation on
Blog will do what we want.

But when we have a result set containing several Blog entities (or different entities), we don’t know on which entity to
call the aforementioned method. In this case, we keep the generic behaviour.

Hence we have two cases here, one for a single-entity rsets, the other for multi-entities rsets.

In web/views/boxes.py lies the RSSIconBox class. Look at its selector:

class RSSIconBox(box.Box):
''' just display the RSS icon on uniform result set '''
__select__ = box.Box.__select__ & non_final_entity()

It takes into account:

• the inherited selection criteria (one has to look them up in the class hierarchy to know the details)

• non_final_entity, which filters on result sets containing non final entities (a ‘final entity’ being synonym for
entity attributes type, eg String, Int, etc)

5.2. The Registry, selectors and application objects 121

Cubicweb Documentation, Release 3.38.10

This matches our second case. Hence we have to provide a specific component for the first case:

class EntityRSSIconBox(RSSIconBox):
'''just display the RSS icon on uniform result set for a single entity'''
__select__ = RSSIconBox.__select__ & one_line_rset()

Here, one adds the one_line_rset predicate, which filters result sets of size 1. Thus, on a result set containing
multiple entities, one_line_rset makes the EntityRSSIconBox class non selectable. However for a result set with
one entity, the EntityRSSIconBox class will have a higher score than RSSIconBox, which is what we wanted.

Of course, once this is done, you have to:

• fill in the call method of EntityRSSIconBox

• provide the default implementation of the method returning the RSS stream url on AnyEntity

• redefine this method on Blog.

When to use selectors?

Selectors are to be used whenever arises the need of dispatching on the shape or content of a result set or whatever else
context (value in request form params, authenticated user groups, etc. . .). That is, almost all the time.

Here is a quick example:

class UserLink(component.Component):
'''if the user is the anonymous user, build a link to login else a link
to the connected user object with a logout link
'''
__regid__ = 'loggeduserlink'

def call(self):
if self._cw.session.anonymous_session:

display login link
...

else:
display a link to the connected user object with a loggout link
...

The proper way to implement this with CubicWeb is two have two different classes sharing the same identifier but with
different selectors so you’ll get the correct one according to the context.

class UserLink(component.Component):
'''display a link to the connected user object with a loggout link'''
__regid__ = 'loggeduserlink'
__select__ = component.Component.__select__ & authenticated_user()

def call(self):
display useractions and siteactions
...

class AnonUserLink(component.Component):
'''build a link to login'''
__regid__ = 'loggeduserlink'
__select__ = component.Component.__select__ & anonymous_user()

(continues on next page)

122 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

def call(self):
display login link
...

The big advantage, aside readability once you’re familiar with the system, is that your cube becomes much more easily
customizable by improving componentization.

Defining your own predicates

You can use the objectify_predicate decorator to easily write your own predicates as simple python functions.

In other cases, you can take a look at the following abstract base classes:

• ExpectedValuePredicate

• EClassPredicate

• EntityPredicate

Debugging selection

Once in a while, one needs to understand why a view (or any application object) is, or is not selected appropriately.
Looking at which predicates fired (or did not) is the way. The traced_selection context manager to help with that,
if you’re running your instance in debug mode.

5.2.4 Base predicates

Here is a description of generic predicates provided by CubicWeb that should suit most of your needs.

Bare predicates

Those predicates are somewhat dumb, which doesn’t mean they’re not (very) useful.

• yes

• match_kwargs

• appobject_selectable

• adaptable

• configuration_values

Result set predicates

Those predicates are looking for a result set in the context (‘rset’ argument or the input context) and match or not
according to its shape. Some of these predicates have different behaviour if a particular cell of the result set is specified
using ‘row’ and ‘col’ arguments of the input context or not.

• none_rset

• any_rset

• nonempty_rset

• empty_rset

5.2. The Registry, selectors and application objects 123

Cubicweb Documentation, Release 3.38.10

• one_line_rset

• multi_lines_rset

• multi_columns_rset

• paginated_rset

• sorted_rset

• one_etype_rset

• multi_etypes_rset

Entity predicates

Those predicates are looking for either an entity argument in the input context, or entity found in the result set (‘rset’
argument or the input context) and match or not according to entity’s (instance or class) properties.

• non_final_entity

• is_instance

• score_entity

• rql_condition

• relation_possible

• partial_relation_possible

• has_related_entities

• partial_has_related_entities

• has_permission

• has_add_permission

• has_mimetype

• is_in_state

• on_fire_transition

Logged user predicates

Those predicates are looking for properties of the user issuing the request.

• match_user_groups

Web request predicates

Those predicates are looking for properties of web request, they can not be used on the data repository side.

• no_cnx

• anonymous_user

• authenticated_user

• match_form_params

• match_search_state

124 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• match_context_prop

• match_context

• match_view

• primary_view

• contextual

• specified_etype_implements

• attribute_edited

• match_transition

Other predicates

• match_exception

• debug_mode

You’ll also find some other (very) specific predicates hidden in other modules than cubicweb.predicates.

5.3 Data model

This chapter describes how you define a schema and how to make it evolves as the time goes.

5.3.1 Yams schema

The schema is the core piece of a CubicWeb instance as it defines and handles the data model. It is based on entity
types that are either already defined in Yams and the CubicWeb standard library; or more specific types defined in
cubes. The schema for a cube is defined in a schema python module or package.

Overview

The core idea of the yams schema is not far from the classical Entity-relationship model. But while an E/R model
(or logical model) traditionally has to be manually translated to a lower-level data description language (such as the
SQL create table sublanguage), also often described as the physical model, no such step is required with Yams and
CubicWeb.

This is because in addition to high-level, logical Yams models, one uses the RQL data manipulation language to query,
insert, update and delete data. RQL abstracts as much of the underlying SQL database as a Yams schema abstracts from
the physical layout. The vagaries of SQL are avoided.

As a bonus point, such abstraction make it quite comfortable to build or use different backends to which RQL queries
apply.

So, as in the E/R formalism, the building blocks are entities (Entity type), relationships (Relation type, Relation
definition) and attributes (handled like relation with Yams).

Let us detail a little the divergences between E/R and Yams:

• all relationship are binary which means that to represent a non-binary relationship, one has to use an entity,

• relationships do not support attributes (yet, see: http://www.cubicweb.org/ticket/341318), hence the need to reify
it as an entity if need arises,

5.3. Data model 125

https://www.logilab.org/project/yams
http://en.wikipedia.org/wiki/Entity-relationship_model
http://www.cubicweb.org/ticket/341318

Cubicweb Documentation, Release 3.38.10

• all entities have an eid attribute (an integer) that is its primary key (but it is possible to declare uniqueness on
other attributes)

Also Yams supports the notions of:

• entity inheritance (quite experimental yet, and completely undocumented),

• relation type: that is, relationships can be established over a set of couple of entity types (henre the distinction
made between RelationType and RelationDefinition below)

Finally Yams has a few concepts of its own:

• relationships being oriented and binary, we call the left hand entity type the subject and the right hand entity
type the object

Note: The Yams schema is available at run time through the .schema attribute of the vregistry. It’s an instance of
cubicweb.schema.Schema, which extends yams.schema.Schema.

Entity type

An entity type is an instance of yams.schema.EntitySchema. Each entity type has a set of attributes and relations,
and some permissions which define who can add, read, update or delete entities of this type.

The following built-in types are available: String, Int, BigInt, Float, Decimal, Boolean, Date, Datetime, Time,
Interval, Byte and Password. They can only be used as attributes of an other entity type.

There is also a RichString kindof type:

yams.buildobjs.RichString(default_format: str = 'text/plain', format_constraints:
typing.Optional[typing.List[yams.constraints.BaseConstraint]] = None, required:
bool = False, maxsize: typing.Optional[int] = None, formula=<nullobject>,
vocabulary: typing.Optional[typing.List[str]] = None, unique:
typing.Optional[bool] = None, override: bool = False, **kwargs)

RichString is a convenience attribute type for attribute containing text in a format that should be specified in
another attribute.

The following declaration:

class Card(EntityType):
content = RichString(fulltextindexed=True, default_format='text/rest')

is equivalent to:

class Card(EntityType):
content_format = String(internationalizable=True,

default='text/rest', constraints=[FORMAT_CONSTRAINT])
content = String(fulltextindexed=True)

The __unique_together__ class attribute is a list of tuples of names of attributes or inlined relations. For each tuple,
CubicWeb ensures the unicity of the combination. For example:

class State(EntityType):
__unique_together__ = [('name', 'state_of')]

name = String(required=True)
(continues on next page)

126 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

state_of = SubjectRelation('Workflow', cardinality='1*',
composite='object', inlined=True)

You can find more base entity types in Pre-defined entities in the library.

Relation type

A relation type is an instance of yams.schema.RelationSchema. A relation type is simply a semantic definition of
a kind of relationship that may occur in an application.

It may be referenced by zero, one or more relation definitions.

It is important to choose a good name, at least to avoid conflicts with some semantically different relation defined in
other cubes (since there’s only a shared name space for these names).

A relation type holds the following properties (which are hence shared between all relation definitions of that type):

• inlined: boolean handling the physical optimization for archiving the relation in the subject entity table, instead of
creating a specific table for the relation. This applies to relations where cardinality of subject->relation->object
is 0..1 (?) or 1..1 (1) for all its relation definitions.

• symmetric: boolean indicating that the relation is symmetrical, which means that X relation Y implies Y relation
X.

Relation definition

A relation definition is an instance of yams.schema.RelationDefinition. It is a complete triplet “<subject entity
type> <relation type> <object entity type>”.

When creating a new instance of that class, the corresponding RelationType instance is created on the fly if necessary.

Properties

The available properties for relation definitions are enumerated here. There are several kind of properties, as some
relation definitions are actually attribute definitions, and other are not.

Some properties may be completely optional, other may have a default value.

Common properties for attributes and relations:

• description: a unicode string describing an attribute or a relation. By default this string will be used in the editing
form of the entity, which means that it is supposed to help the end-user and should be flagged by the function _
to be properly internationalized.

• constraints: a list of conditions/constraints that the relation has to satisfy (c.f. Constraints)

• cardinality: a two character string specifying the cardinality of the relation. The first character defines the
cardinality of the relation on the subject, and the second on the object. When a relation can have multiple
subjects or objects, the cardinality applies to all, not on a one-to-one basis (so it must be consistent. . .). Default
value is ‘**’. The possible values are inspired from regular expression syntax:

– 1: 1..1

– ?: 0..1

– +: 1..n

– *: 0..n

5.3. Data model 127

Cubicweb Documentation, Release 3.38.10

Attributes properties:

• unique: boolean indicating if the value of the attribute has to be unique or not within all entities of the same type
(false by default)

• indexed: boolean indicating if an index needs to be created for this attribute in the database (false by default).
This is useful only if you know that you will have to run numerous searches on the value of this attribute.

• default: default value of the attribute. In case of date types, the values which could be used correspond to the
RQL keywords TODAY and NOW.

• metadata: Is also accepted as an argument of the attribute contructor. It is not really an attribute property. see
Metadata for details.

Properties for String attributes:

• fulltextindexed: boolean indicating if the attribute is part of the full text index (false by default) (applicable on
the type `Byte` as well)

• internationalizable: boolean indicating if the value of the attribute is internationalizable (false by default)

Relation properties:

• composite: string indicating that the subject (composite == ‘subject’) is composed of the objects of the rela-
tions. For the opposite case (when the object is composed of the subjects of the relation), we just set ‘object’ as
value. The composition implies that when the relation is deleted (so when the composite is deleted, at least), the
composed are also deleted.

• fulltext_container: string indicating if the value if the full text indexation of the entity on one end of the relation
should be used to find the entity on the other end. The possible values are ‘subject’ or ‘object’. For instance the
use_email relation has that property set to ‘subject’, since when performing a full text search people want to find
the entity using an email address, and not the entity representing the email address.

Constraints

By default, the available constraint types are:

General Constraints

• SizeConstraint: allows to specify a minimum and/or maximum size on string (generic case of maxsize)

• BoundaryConstraint: allows to specify a minimum and/or maximum value on numeric types and date

from yams.constraints import BoundaryConstraint, TODAY, NOW, Attribute

class DatedEntity(EntityType):
start = Date(constraints=[BoundaryConstraint('>=', TODAY())])
end = Date(constraints=[BoundaryConstraint('>=', Attribute('start'))])

class Before(EntityType);
last_time = DateTime(constraints=[BoundaryConstraint('<=', NOW())])

• IntervalBoundConstraint: allows to specify an interval with included values

class Node(EntityType):
latitude = Float(constraints=[IntervalBoundConstraint(-90, +90)])

• UniqueConstraint: identical to “unique=True”

128 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• StaticVocabularyConstraint: identical to “vocabulary=(. . .)”

• RegexpConstraint: set allowed patterns as a regexp

from yams.constraints import RegexpConstraint

class Organisation(EntityType):
name = String(constraints=[RegexpConstraint('^[^_]*$')])

Constraints can be dependent on a fixed value (90, Date(2015,3,23)) or a variable. In this second case, yams can handle
:

• Attribute: compare to the value of another attribute.

• TODAY : compare to the current Date.

• NOW : compare to the current Datetime.

See YAMS constraint module documentation.

RQL Based Constraints

RQL based constraints may take three arguments. The first one is the WHERE clause of a RQL query used by the
constraint. The second argument mainvars is the Any clause of the query. By default this include S reserved for the
subject of the relation and O for the object. Additional variables could be specified using mainvars. The argument
expects a single string with all variable’s name separated by spaces. The last one, msg, is the error message displayed
when the constraint fails. As RQLVocabularyConstraint never fails the third argument is not available.

• RQLConstraint: allows to specify a RQL query that has to be satisfied by the subject and/or the object of relation.
In this query the variables S and O are reserved for the relation subject and object entities.

• RQLVocabularyConstraint: similar to the previous type of constraint except that it does not express a “strong”
constraint, which means it is only used to restrict the values listed in the drop-down menu of editing form, but it
does not prevent another entity to be selected.

• RQLUniqueConstraint: allows to the specify a RQL query that ensure that an attribute is unique in a specific
context. The Query must never return more than a single result to be satisfied. In this query the variables S
is reserved for the relation subject entity. The other variables should be specified with the second constructor
argument (mainvars). This constraint type should be used when __unique_together__ doesn’t fit.

The security model

The security model of CubicWeb is based on Access Control List. The main principles are:

• users and groups of users

• a user belongs to at least one group of user

• permissions (read, update, create, delete)

• permissions are assigned to groups (and not to users)

For CubicWeb in particular:

• we associate rights at the entities/relations schema level

• the default groups are: managers, users and guests

• users belong to the users group

• there is a virtual group called owners to which we can associate only delete and update permissions

5.3. Data model 129

https://yams.readthedocs.io/en/latest/yams.html#module-yams.constraints

Cubicweb Documentation, Release 3.38.10

– we can not add users to the owners group, they are implicitly added to it according to the context of the
objects they own

– the permissions of this group are only checked on update/delete actions if all the other groups the user
belongs to do not provide those permissions

Setting permissions is done with the class attribute __permissions__ of entity types and relation definitions. The value
of this attribute is a dictionary where the keys are the access types (action), and the values are the authorized groups or
rql expressions.

For an entity type, the possible actions are read, add, update and delete.

For a relation, the possible actions are read, add, and delete.

For an attribute, the possible actions are read, add and update, and they are a refinement of an entity type permission.

Note: By default, the permissions of an entity type attributes are equivalent to the permissions of the entity type itself.

It is possible to provide custom attribute permissions which are stronger than, or are more lenient than the entity type
permissions.

In a situation where all attributes were given custom permissions, the entity type permissions would not be checked,
except for the delete action.

For each access type, a tuple indicates the name of the authorized groups and/or one or multiple RQL expressions to
satisfy to grant access. The access is provided if the user is in one of the listed groups or if one of the RQL condition
is satisfied.

Default permissions

The default permissions for EntityType are:

__permissions__ = {
'read': ('managers', 'users', 'guests',),
'update': ('managers', 'owners',),
'delete': ('managers', 'owners'),
'add': ('managers', 'users',)
}

The default permissions for relations are:

__permissions__ = {'read': ('managers', 'users', 'guests',),
'delete': ('managers', 'users'),
'add': ('managers', 'users',)}

The default permissions for attributes are:

__permissions__ = {'read': ('managers', 'users', 'guests',),
'add': ('managers', ERQLExpression('U has_add_permission X')),
'update': ('managers', ERQLExpression('U has_update_permission X')),}

Note: The default permissions for attributes are not syntactically equivalent to the default permissions of the entity
types, but the rql expressions work by delegating to the entity type permissions.

130 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

The standard user groups

• guests

• users

• managers

• owners: virtual group corresponding to the entity’s owner. This can only be used for the actions update and
delete of an entity type.

It is also possible to use specific groups if they are defined in the precreate script of the cube (migration/precreate.
py). Defining groups in postcreate script or later makes them unavailable for security purposes (in this case, an
sync_schema_props_perms command has to be issued in a CubicWeb shell).

Use of RQL expression for write permissions

It is possible to define RQL expression to provide update permission (add, delete and update) on entity type / relation
definitions. An rql expression is a piece of query (corresponds to the WHERE statement of an RQL query), and the
expression will be considered as satisfied if it returns some results. They can not be used in read permission.

To use RQL expression in entity type permission:

• you have to use the class ERQLExpression

• in this expression, the variables X and U are pre-defined references respectively on the current entity (on which
the action is verified) and on the user who send the request

For RQL expressions on a relation type, the principles are the same except for the following:

• you have to use the class RRQLExpression instead of ERQLExpression

• in the expression, the variables S, O and U are pre-defined references to respectively the subject and the object
of the current relation (on which the action is being verified) and the user who executed the query

To define security for attributes of an entity (non-final relation), you have to use the class ERQLExpression in which
X represents the entity the attribute belongs to.

It is possible to use in those expression a special relation has_<ACTION>_permission where the subject is the
user (eg ‘U’) and the object is any variable representing an entity (usually ‘X’ in ERQLExpression, ‘S’ or ‘O’ in
RRQLExpression), meaning that the user needs to have permission to execute the action <ACTION> on the entities
represented by this variable. It’s recommanded to use this feature whenever possible since it simplify greatly complex
security definition and upgrade.

class my_relation(RelationDefinition):
__permissions__ = {'read': ('managers', 'users'),

'add': ('managers', RRQLExpression('U has_update_permission S')),
'delete': ('managers', RRQLExpression('U has_update_permission S')),

}

In the above example, user will be allowed to add/delete my_relation if he has the update permission on the subject of
the relation.

Note: Potentially, the use of an RQL expression to add an entity or a relation can cause problems for the user interface,
because if the expression uses the entity or the relation to create, we are not able to verify the permissions before we
actually added the entity (please note that this is not a problem for the RQL server at all, because the permissions
checks are done after the creation). In such case, the permission check methods (CubicWebEntitySchema.check_perm
and has_perm) can indicate that the user is not allowed to create this entity while it would obtain the permission. To

5.3. Data model 131

Cubicweb Documentation, Release 3.38.10

compensate this problem, it is usually necessary in such case to use an action that reflects the schema permissions but
which check properly the permissions so that it would show up only if possible.

Use of RQL expression for reading rights

The principles are the same but with the following restrictions:

• you can not use rql expression for the read permission of relations and attributes,

• you can not use special has_<ACTION>_permission relation in the rql expression.

Important notes about write permissions checking

Write permissions (e.g. ‘add’, ‘update’, ‘delete’) are checked in core hooks.

When a permission is checked slightly vary according to if it’s an entity or relation, and if the relation is an attribute
relation or not). It’s important to understand that since according to when a permission is checked, values returned by
rql expressions may changes, hence the permission being granted or not.

Here are the current rules:

1. permission to add/update entity and its attributes are checked on commit

2. permission to delete an entity is checked in ‘before_delete_entity’ hook

3. permission to add a relation is checked either:

• in ‘before_add_relation’ hook if the relation type is in the BEFORE_ADD_RELATIONS set

• else at commit time if the relation type is in the ON_COMMIT_ADD_RELATIONS set

• else in ‘after_add_relation’ hook (the default)

4. permission to delete a relation is checked in ‘before_delete_relation’ hook

Last but not least, remember queries issued from hooks and operation are by default ‘unsafe’, eg there are no read or
write security checks.

See cubicweb.hooks.security for more details.

5.3.2 Derived attributes and relations

Note: TODO Check organisation of the whole chapter of the documentation

Cubicweb offers the possibility to query data using so called computed relations and attributes. Those are seen by
RQL requests as normal attributes and relations but are actually derived from other attributes and relations. In a first
section we’ll informally review two typical use cases. Then we see how to use computed attributes and relations in
your schema. Last we will consider various significant aspects of their implementation and the impact on their usage.

132 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

Motivating use cases

Computed (or reified) relations

It often arises that one must represent a ternary relation, or a family of relations. For example, in the context of an
exhibition catalog you might want to link all contributors to the work they contributed to, but this contribution can be
as illustrator, author, performer, . . .

The classical way to describe this kind of information within an entity-relationship schema is to reify the relation, that
is turn the relation into a entity. In our example the schema will have a Contribution entity type used to represent the
family of the contribution relations.

class ArtWork(EntityType):
name = String()
...

class Person(EntityType):
name = String()
...

class Contribution(EntityType):
contributor = SubjectRelation('Person', cardinality='1*', inlined=True)
manifestation = SubjectRelation('ArtWork')
role = SubjectRelation('Role')

class Role(EntityType):
name = String()

But then, in order to query the illustrator(s) I of a work W, one has to write:

Any I, W WHERE C is Contribution, C contributor I, C manifestation W,
C role R, R name 'illustrator'

whereas we would like to be able to simply write:

Any I, W WHERE I illustrator_of W

This is precisely what the computed relations allow.

Computed (or synthesized) attribute

Assuming a trivial schema for describing employees in companies, one can be interested in the total of salaries payed
by a company for all its employees. One has to write:

Any C, SUM(SA) GROUPBY S WHERE E works_for C, E salary SA

whereas it would be most convenient to simply write:

Any C, TS WHERE C total_salary TS

And this is again what computed attributes provide.

5.3. Data model 133

Cubicweb Documentation, Release 3.38.10

Using computed attributes and relations

Computed (or reified) relations

In the above case we would define the computed relation illustrator_of in the schema by:

class illustrator_of(ComputedRelation):
rule = ('C is Contribution, C contributor S, C manifestation O,'

'C role R, R name "illustrator"')

You will note that:

• the S and O RQL variables implicitly identify the subject and object of the defined computed relation, akin to
what happens in RRQLExpression

• the possible subject and object entity types are inferred from the rule;

• computed relation definitions always have empty add and delete permissions

• read permissions can be defined, permissions from the relations used in the rewrite rule are not considered ;

• nothing else may be defined on the ComputedRelation subclass beside description, permissions and rule (e.g. no
cardinality, composite, etc.,). BadSchemaDefinition is raised on attempt to specify other attributes;

• computed relations can not be used in ‘SET’ and ‘DELETE’ rql queries (BadQuery exception raised).

NB: The fact that the add and delete permissions are empty even for managers is expected to make the automatic UI
not attempt to edit them.

Computed (or synthesized) attributes

In the above case we would define the computed attribute total_salary on the Company entity type in the schema
by:

class Company(EntityType):
name = String()
total_salary = Int(formula='Any SUM(SA) GROUPBY E WHERE P works_for X, E salary SA')

• the XRQL variable implicitly identifies the entity holding the computed attribute, akin to what happens in ERQL-
Expression;

• the type inferred from the formula is checked against the declared type, and BadSchemaDefinition is raised if
they don’t match;

• the computed attributes always have empty update permissions

• BadSchemaDefinition is raised on attempt to set ‘update’ permissions;

• ‘read’ permissions can be defined, permissions regarding the formula are not considered;

• other attribute’s property (inlined, . . .) can be defined as for normal attributes;

• Similarly to computed relation, computed attribute can’t be used in ‘SET’ and ‘DELETE’ rql queries (BadQuery
exception raised).

134 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

API and implementation

Representation in the data backend

Computed relations have no direct representation at the SQL table level. Instead, each time a query is issued the query
is rewritten to replace the computed relation by its equivalent definition and the resulting rewritten query is performed
in the usual way.

On the contrary, computed attributes are represented as a column in the table for their host entity type, just like normal
attributes. Their value is kept up-to-date with respect to their defintion by a system of hooks (also called triggers in
most RDBMS) which recomputes them when the relations and attributes they depend on are modified.

Yams API

When accessing the schema through the yams API (not when defining a schema in a schema.py file) the computed
attributes and relations are represented as follows:

relations The yams.RelationSchema class has a new rule attribute holding the rule as a string. If this attribute is
set all others must not be set.

attributes A new property formula is added on class yams.RelationDefinitionSchema alomng with a new key-
word argument formula on the initializer.

Migration

The migrations are to be handled as summarized in the array below.

Computed rtype Computed attribute
add

• add_relation_type
• add_relation_definition

should trigger an error

• add_attribute
• add_relation_definition

modify
(rule or formula) • sync_schema_prop_perms:

checks the rule is synchro-
nized with the database

• sync_schema_prop_perms:
– empty the cache,
– check formula,
– make sure all the values

get updated

del
• drop_relation_type
• drop_relation_definition

should trigger an error

• drop_attribute
• drop_relation_definition

5.3. Data model 135

Cubicweb Documentation, Release 3.38.10

5.3.3 Defining your schema using yams

Entity type definition

An entity type is defined by a Python class which inherits from yams.buildobjs.EntityType. The class definition
contains the description of attributes and relations for the defined entity type. The class name corresponds to the entity
type name. It is expected to be defined in the module mycube.schema.

Note on schema definition The code in mycube.schema is not meant to be executed. The class Entity-
Type mentioned above is different from the EntitySchema class described in the previous chapter.
EntityType is a helper class to make Entity definition easier. Yams will process EntityType classes
and create EntitySchema instances from these class definitions. Similar manipulation happen for
relations.

When defining a schema using python files, you may use the following shortcuts:

• required: boolean indicating if the attribute is required, ed subject cardinality is ‘1’

• vocabulary: specify static possible values of an attribute

• maxsize: integer providing the maximum size of a string (no limit by default)

For example:

class Person(EntityType):
"""A person with the properties and the relations necessary for my
application"""

last_name = String(required=True, fulltextindexed=True)
first_name = String(required=True, fulltextindexed=True)
title = String(vocabulary=('Mr', 'Mrs', 'Miss'))
date_of_birth = Date()
works_for = SubjectRelation('Company', cardinality='?*')

The entity described above defines three attributes of type String, last_name, first_name and title, an attribute of type
Date for the date of birth and a relation that connects a Person to another entity of type Company through the semantic
works_for.

Naming convention Entity class names must start with an uppercase letter. The common usage is to use
CamelCase names.

Attribute and relation names must start with a lowercase letter. The common usage is to use
underscore_separated_words. Attribute and relation names starting with a single underscore
are permitted, to denote a somewhat “protected” or “private” attribute.

In any case, identifiers starting with “CW” or “cw” are reserved for internal use by the framework.

Some attribute using the name of another attribute as prefix are considered metadata. For example,
if an EntityType have both a data and data_format attribute, data_format is view as the format
metadata of data. Later the cw_attr_metadata() method will allow you to fetch metadata related
to an attribute. There are only three valid metadata names: format, encoding and name.

The name of the Python attribute corresponds to the name of the attribute or the relation in CubicWeb application.

An attribute is defined in the schema as follows:

attr_name = AttrType(*properties, metadata={})

where

• AttrType: is one of the type listed in EntityType,

136 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• properties: is a list of the attribute needs to satisfy (see Properties for more details),

• metadata: is a dictionary of meta attributes related to attr_name. Dictionary keys are the name of the meta
attribute. Dictionary values attributes objects (like the content of AttrType). For each entry of the metadata
dictionary a <attr_name>_<key> = <value> attribute is automaticaly added to the EntityType. see Metadata
section for details about valid key.

—

While building your schema

• it is possible to use the attribute meta to flag an entity type as a meta (e.g. used to describe/categorize other
entities)

Note: if you end up with an if in the definition of your entity, this probably means that you need two separate entities
that implement the ITree interface and get the result from .children() which ever entity is concerned.

Definition of relations

A relation is defined by a Python class heriting RelationType. The name of the class corresponds to the name of the
type. The class then contains a description of the properties of this type of relation, and could as well contain a string
for the subject and a string for the object. This allows to create new definition of associated relations, (so that the class
can have the definition properties from the relation) for example

class locked_by(RelationType):
"""relation on all entities indicating that they are locked"""
inlined = True
cardinality = '?*'
subject = '*'
object = 'CWUser'

If provided, the subject and object attributes denote the subject and object of the various relation definitions related to
the relation type. Allowed values for these attributes are:

• a string corresponding to an entity type

• a tuple of string corresponding to multiple entity types

• the ‘*’ special string, meaning all types of entities

When a relation is not inlined and not symmetrical, and it does not require specific permissions, it can be defined using
a SubjectRelation attribute in the EntityType class. The first argument of SubjectRelation gives the entity type for the
object of the relation.

Naming convention Although this way of defining relations uses a Python class, the naming convention
defined earlier prevails over the PEP8 conventions used in the framework: relation type class names
use underscore_separated_words.

Historical note It has been historically possible to use ObjectRelation which defines a relation in the
opposite direction. This feature is deprecated and therefore should not be used in newly written
code.

Future deprecation note In an even more remote future, it is quite possible that the SubjectRelation
shortcut will become deprecated, in favor of the RelationType declaration which offers some advan-
tages in the context of reusable cubes.

5.3. Data model 137

Cubicweb Documentation, Release 3.38.10

Handling schema changes

Also, it should be clear that to properly handle data migration, an instance’s schema is stored in the database, so the
python schema file used to defined it is only read when the instance is created or upgraded.

5.3.4 Metadata

Each entity type in CubicWeb has at least the following meta-data attributes and relations:

eid entity’s identifier which is unique in an instance. We usually call this identifier eid for historical reason.

creation_date Date and time of the creation of the entity.

modification_date Date and time of the latest modification of an entity.

cwuri Reference URL of the entity, which is not expected to change.

created_by Relation to the users who has created the entity

owned_by Relation to users whom the entity belongs; usually the creator but not necessary, and it could have multiple
owners notably for permission control

is Relation to the entity type of which type the entity is.

is_instance Relation to the entity types of which type the entity is an instance of.

5.3.5 Pre-defined entities in the library

The library defines a set of entity schemas that are required by the system or commonly used in CubicWeb instances.

Entity types used to store the schema

• CWEType, entity type

• CWRType, relation type

• CWRelation, relation definition

• CWAttribute, attribute relation definition

• CWConstraint, CWConstraintType, RQLExpression

Entity types used to manage users and permissions

• CWUser, system users

• CWGroup, users groups

138 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

Entity types used to manage workflows

• Workflow, workflow entity, linked to some entity types which may use this workflow

• State, workflow state

• Transition, workflow transition

• TrInfo, record of a transition trafic for an entity

Other entity types

• CWProperty, used to configure the instance

• EmailAddress, email address, used by the system to send notifications to the users and also used by others
optionnals schemas

• Bookmark, an entity type used to allow a user to customize his links within the instance

• ExternalUri, used for semantic web site to indicate that an entity is the same as another from an external site

5.3.6 Defining a Workflow

General

A workflow describes how certain entities have to evolve between different states. Hence we have a set of states, and a
“transition graph”, i.e. a set of possible transitions from one state to another state.

We will define a simple workflow for a blog, with only the following two states: submitted and published. You may
want to take a look at Building a simple blog with CubicWeb if you want to quickly setup an instance running a blog.

Setting up a workflow

We want to create a workflow to control the quality of the BlogEntry submitted on the instance. When a BlogEntry is
created by a user its state should be submitted. To be visible to all, it has to be in the state published. To move it from
submitted to published, we need a transition that we can call approve_blogentry.

A BlogEntry state should not be modifiable by every user. So we have to define a group of users, moderators, and this
group will have appropriate permissions to publish a BlogEntry.

There are two ways to create a workflow: from the user interface, or by defining it in migration/postcreate.py.
This script is executed each time a new cubicweb-ctl db-init is done. We strongly recommend to create the
workflow in migration/postcreate.py and we will now show you how. Read Two bits of warning to understand
why.

The state of an entity is managed by the in_state attribute which can be added to your entity schema by inheriting from
cubicweb.schema.WorkflowableEntityType.

About our example of BlogEntry, we must have:

from cubicweb.schema import WorkflowableEntityType

class BlogEntry(WorkflowableEntityType):
...

5.3. Data model 139

Cubicweb Documentation, Release 3.38.10

Creating states, transitions and group permissions

The postcreate script is executed in a special environment, adding several CubicWeb primitives that can be used.

They are all defined in the ServerMigrationHelper class. We will only discuss the methods we use to create a
workflow in this example.

A workflow is a collection of entities of type State and of type Transition which are standard CubicWeb entity
types.

To define a workflow for BlogDemo, please add the following lines to migration/postcreate.py:

from cubicweb import _

moderators = add_entity('CWGroup', name=u"moderators")

This adds the moderators user group.

wf = add_workflow(u'blog publication workflow', 'BlogEntry')

At first, instanciate a new workflow object with a gentle description and the concerned entity types (this one can be a
tuple for multiple value).

submitted = wf.add_state(_('submitted'), initial=True)
published = wf.add_state(_('published'))

This will create two entities of type State, one with name ‘submitted’, and the other with name ‘published’.

add_state expects as first argument the name of the state you want to create and an optional argument to say if it is
supposed to be the initial state of the entity type.

wf.add_transition(_('approve_blogentry'), (submitted,), published, ('moderators',
→˓'managers'),)

This will create an entity of type Transition with name approve_blogentry which will be linked to the State entities
created before.

add_transition expects

• as the first argument: the name of the transition

• then the list of states on which the transition can be triggered,

• the target state of the transition,

• and the permissions (e.g. a list of user groups who can apply the transition; the user has to belong to at least one
of the listed group to perform the action).

Note: Do not forget to add the _() in front of all states and transitions names while creating a workflow so that they
will be identified by the i18n catalog scripts.

In addition to the user groups (one of which the user needs to belong to), we could have added a RQL condition. In
this case, the user can only perform the action if the two conditions are satisfied.

If we use an RQL condition on a transition, we can use the following variables:

• X, the entity on which we may pass the transition

140 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• U, the user executing that may pass the transition

It’s also possible to get a given transition (usefull in migration) from a workflow use transition_by_name(trname). To
update the permission associated to the transition use set_permissions(requiredgroups=(), conditions=(), reset=True).
If reset is False, then the new permission are added instead of replacing the old one.

You can notice that in the action box of a BlogEntry, the state is now listed as well as the possible transitions for the
current state defined by the workflow.

The transitions will only be displayed for users having the right permissions. In our example, the transition ap-
prove_blogentry will only be displayed for the users belonging to the group moderators or managers.

Two bits of warning

We could perfectly use the administration interface to do these operations. It is a convenient thing to do at times (when
doing development, to quick-check things). But it is not recommended beyond that because it is a bit complicated to
do it right and it will be only local to your instance (or, said a bit differently, such a workflow only exists in an instance
database). Furthermore, you cannot write unit tests against deployed instances, and experience shows it is mandatory
to have tests for any mildly complicated workflow setup.

Indeed, if you create the states and transitions through the user interface, next time you initialize the database you will
have to re-create all the workflow entities. The user interface should only be a reference for you to view the states and
transitions, but is not the appropriate interface to define your application workflow.

5.3. Data model 141

Cubicweb Documentation, Release 3.38.10

Alternative way to declare workflows

Workflow setup utilities.

These functions work with a declarative workflow definition:

{
'etypes': 'CWGroup',
'default': True,
'initial_state': u'draft',
'states': [u'draft', u'published'],
'transitions': {

u'publish': {
'fromstates': u'draft',
'tostate': u'published',
'requiredgroups': u'managers'
'conditions': (

'U in_group X',
'X owned_by U'

)
}

}
}

cubicweb.wfutils.setup_workflow(cnx, name, wfdef, cleanup=True)
Create or update a workflow definition so it matches the given definition.

Parameters
• cnx – A connexion with enough permissions to define a workflow

• name – The workflow name. Used to create the Workflow entity, or to find an existing one.

• wfdef – A workflow definition.

• cleanup – Remove extra states and transitions. Can be done separatly by calling
cleanupworkflow().

Returns The created/updated workflow entity

cubicweb.wfutils.cleanupworkflow(cnx, wf, wfdef)
Cleanup an existing workflow by removing the states and transitions that do not exist in the given definition.

Parameters
• cnx – A connexion with enough permissions to define a workflow

• wf – A Workflow entity

• wfdef – A workflow definition

142 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

5.4 Data as objects

In this chapter, we will introduce the objects that are used to handle the logic associated to the data stored in the database.

5.4.1 Access to persistent data

Python-level access to persistent data is provided by the Entity class.

An entity class is bound to a schema entity type. Descriptors are added when classes are registered in order to initialize
the class according to its schema:

• the attributes defined in the schema appear as attributes of these classes

• the relations defined in the schema appear as attributes of these classes, but are lists of instances

Formatting and output generation:

• view(__vid, __registry='views', **kwargs)(), applies the given view to the entity (and returns a uni-
code string)

• absolute_url(*args, **kwargs)(), returns an absolute URL including the base-url

• rest_path(), returns a relative REST URL to get the entity

• printable_value(attr, value=_marker, attrtype=None, format='text/html',
displaytime=True)(), returns a string enabling the display of an attribute value in a given format (the
value is automatically recovered if necessary)

Data handling:

• as_rset(), converts the entity into an equivalent result set simulating the request Any X WHERE X eid _eid_

• complete(skip_bytes=True)(), executes a request that recovers at once all the missing attributes of an entity

• get_value(name)(), returns the value associated to the attribute name given in parameter

• related(rtype, role='subject', limit=None, entities=False)(), returns a list of entities related
to the current entity by the relation given in parameter

• unrelated(rtype, targettype, role='subject', limit=None)(), returns a result set corresponding
to the entities not (yet) related to the current entity by the relation given in parameter and satisfying its constraints

• cw_set(**kwargs)(), updates entity’s attributes and/or relation with the corresponding values given named
parameters. To set a relation where this entity is the object of the relation, use reverse_<relation> as argument
name. Values may be an entity, a list of entities, or None (meaning that all relations of the given type from or to
this object should be deleted).

• copy_relations(ceid)(), copies the relations of the entities having the eid given in the parameters on the
current entity

• cw_delete() allows to delete the entity

5.4. Data as objects 143

Cubicweb Documentation, Release 3.38.10

5.4.2 The AnyEntity class

To provide a specific behavior for each entity, we can define a class inheriting from cubicweb.entities.AnyEntity. In
general, we define this class in mycube.entities module (or in a submodule if we want to split code among multiple
files) so that it will be available on both server and client side.

The class AnyEntity is a sub-class of Entity that add methods to it, and helps specializing (by further subclassing) the
handling of a given entity type.

Most methods defined for AnyEntity, in addition to Entity, add support for the Dublin Core metadata.

Standard meta-data (Dublin Core):

• dc_title(), returns a unicode string corresponding to the meta-data Title (used by default is the first non-meta
attribute of the entity schema)

• dc_long_title(), same as dc_title but can return a more detailed title

• dc_description(format='text/plain')(), returns a unicode string corresponding to the meta-data De-
scription (looks for a description attribute by default)

• dc_authors(), returns a unicode string corresponding to the meta-data Authors (owners by default)

• dc_creator(), returns a unicode string corresponding to the creator of the entity

• dc_date(date_format=None)(), returns a unicode string corresponding to the meta-data Date (update date
by default)

• dc_type(form='')(), returns a string to display the entity type by specifying the preferred form (plural for a
plural form)

• dc_language(), returns the language used by the entity

5.4.3 Inheritance

When describing a data model, entities can inherit from other entities as is common in object-oriented programming.

You have the possibility to redefine whatever pleases you, as follow:

from cubicweb_OTHER_CUBE import entities

class EntityExample(entities.EntityExample):

def dc_long_title(self):
return '%s (%s)' % (self.name, self.description)

The most specific entity definition will always the one used by the ORM. For instance, the new EntityExample above
in mycube replaces the one in OTHER_CUBE. These types are stored in the etype section of the vregistry.

Notice this is different than yams schema inheritance, which is an experimental undocumented feature.

144 Chapter 5. Backend Development

http://dublincore.org/

Cubicweb Documentation, Release 3.38.10

5.4.4 Application logic

While a lot of custom behaviour and application logic can be implemented using entity classes, the programmer must
be aware that adding new attributes and method on an entity class adds may shadow schema-level attribute or relation
definitions.

To keep entities clean (mostly data structures plus a few universal methods such as listed above), one should use adapters
(see Interfaces and Adapters).

5.4.5 Loaded attributes and default sorting management

• The class attribute fetch_attrs allows to define in an entity class a list of names of attributes that should be
automatically loaded when entities of this type are fetched from the database using ORM methods retrieving
entity of this type (such as related() and unrelated()). You can also put relation names in there, but we are
limited to subject relations of cardinality `?` or `1`.

• The cw_fetch_order() and cw_fetch_unrelated_order() class methods are respectively responsible to
control how entities will be sorted when:

– retrieving all entities of a given type, or entities related to another

– retrieving a list of entities for use in drop-down lists enabling relations creation in the editing view of an
entity

By default entities will be listed on their modification date descending, i.e. you’ll get entities recently modified first.
While this is usually a good default in drop-down list, you’ll probably want to change cw_fetch_order.

This may easily be done using the fetch_config() function, which simplifies the definition of attributes to load and
sorting by returning a list of attributes to pre-load (considering automatically the attributes of AnyEntity) and a sorting
function as described below:

cubicweb.entities.fetch_config(fetchattrs, mainattr=None, pclass=<class 'cubicweb.entities.AnyEntity'>,
order='ASC')

function to ease basic configuration of an entity class ORM. Basic usage is:

class MyEntity(AnyEntity):

fetch_attrs, cw_fetch_order = fetch_config(['attr1', 'attr2'])
uncomment line below if you want the same sorting for 'unrelated' entities
cw_fetch_unrelated_order = cw_fetch_order

Using this, when using ORM methods retrieving this type of entity, ‘attr1’ and ‘attr2’ will be automatically
prefetched and results will be sorted on ‘attr1’ ascending (ie the first attribute in the list).

This function will automatically add to fetched attributes those defined in parent class given using the pclass
argument.

Also, You can use mainattr and order argument to have a different sorting.

In you want something else (such as sorting on the result of a registered procedure), here is the prototype of those
methods:

classmethod Entity.cw_fetch_order(select, attr, var)
This class method may be used to control sort order when multiple entities of this type are fetched through ORM
methods. Its arguments are:

• select, the RQL syntax tree

• attr, the attribute being watched

5.4. Data as objects 145

Cubicweb Documentation, Release 3.38.10

• var, the variable through which this attribute’s value may be accessed in the query

When you want to do some sorting on the given attribute, you should modify the syntax tree accordingly. For
instance:

from rql import nodes

class Version(AnyEntity):
__regid__ = 'Version'

fetch_attrs = ('num', 'description', 'in_state')

@classmethod
def cw_fetch_order(cls, select, attr, var):

if attr == 'num':
func = nodes.Function('version_sort_value')
func.append(nodes.variable_ref(var))
sterm = nodes.SortTerm(func, asc=False)
select.add_sort_term(sterm)

The default implementation call cw_fetch_unrelated_order()

classmethod Entity.cw_fetch_unrelated_order(select, attr, var)
This class method may be used to control sort order when multiple entities of this type are fetched to use in
edition (e.g. propose them to create a new relation on an edited entity).

See cw_fetch_unrelated_order() for a description of its arguments and usage.

By default entities will be listed on their modification date descending, i.e. you’ll get entities recently modified
first.

5.4.6 Interfaces and Adapters

Interfaces are the same thing as object-oriented programming interfaces. Adapter refers to a well-known adapter design
pattern that helps separating concerns in object oriented applications.

In CubicWeb adapters provide logical functionalities to entity types.

Definition of an adapter is quite trivial. An excerpt from cubicweb itself (found in cubicweb.entities.adapters):

class ITreeAdapter(EntityAdapter):
"""This adapter has to be overriden to be configured using the
tree_relation, child_role and parent_role class attributes to
benefit from this default implementation
"""
__regid__ = 'ITree'

child_role = 'subject'
parent_role = 'object'

def children_rql(self):
"""returns RQL to get children """
return self.entity.cw_related_rql(self.tree_relation, self.parent_role)

The adapter object has self.entity attribute which represents the entity being adapted.

146 Chapter 5. Backend Development

http://java.sun.com/docs/books/tutorial/java/concepts/interface.html
http://en.wikipedia.org/wiki/Adapter_pattern

Cubicweb Documentation, Release 3.38.10

Note: Adapters came with the notion of service identified by the registry identifier of an adapters, hence dropping the
need for explicit interface and the cubicweb.predicates.implements selector. You should instead use cubicweb.
predicates.is_instance when you want to select on an entity type, or cubicweb.predicates.adaptable when
you want to select on a service.

Specializing and binding an adapter

from cubicweb.entities.adapters import ITreeAdapter

class MyEntityITreeAdapter(ITreeAdapter):
__select__ = is_instance('MyEntity')
tree_relation = 'filed_under'

The ITreeAdapter here provides a default implementation. The tree_relation class attribute is actually used by this
implementation to help implement correct behaviour.

Here we provide a specific implementation which will be bound for MyEntity entity type (the adaptee).

Converting code from Interfaces/Mixins to Adapters

Here we go with a small example. Before:

from cubicweb.predicates import implements
from cubicweb.interfaces import ITree
from cubicweb.mixins import ITreeMixIn

class MyEntity(ITreeMixIn, AnyEntity):
__implements__ = AnyEntity.__implements__ + (ITree,)

class ITreeView(EntityView):
__select__ = implements('ITree')
def cell_call(self, row, col):

entity = self.cw_rset.get_entity(row, col)
children = entity.children()

After:

from cubicweb.predicates import adaptable, is_instance
from cubicweb.entities.adapters import ITreeAdapter

class MyEntityITreeAdapter(ITreeAdapter):
__select__ = is_instance('MyEntity')

class ITreeView(EntityView):
__select__ = adaptable('ITree')
def cell_call(self, row, col):

entity = self.cw_rset.get_entity(row, col)
itree = entity.cw_adapt_to('ITree')
children = itree.children()

5.4. Data as objects 147

Cubicweb Documentation, Release 3.38.10

As we can see, the interface/mixin duality disappears and the entity class itself is completely freed from these concerns.
When you want to use the ITree interface of an entity, call its cw_adapt_to method to get an adapter for this interface,
then access to members of the interface on the adapter

Let’s look at an example where we defined everything ourselves. We start from:

class IFoo(Interface):
def bar(self, *args):

raise NotImplementedError

class MyEntity(AnyEntity):
__regid__ = 'MyEntity'
__implements__ = AnyEntity.__implements__ + (IFoo,)

def bar(self, *args):
return sum(captain.age for captain in self.captains)

class FooView(EntityView):
__regid__ = 'mycube.fooview'
__select__ = implements('IFoo')

def cell_call(self, row, col):
entity = self.cw_rset.get_entity(row, col)
self.w('bar: %s' % entity.bar())

Converting to:

class IFooAdapter(EntityAdapter):
__regid__ = 'IFoo'
__select__ = is_instance('MyEntity')

def bar(self, *args):
return sum(captain.age for captain in self.entity.captains)

class FooView(EntityView):
__regid__ = 'mycube.fooview'
__select__ = adaptable('IFoo')

def cell_call(self, row, col):
entity = self.cw_rset.get_entity(row, col)
self.w('bar: %s' % entity.cw_adapt_to('IFoo').bar())

Note: When migrating an entity method to an adapter, the code can be moved as is except for the self of the entity
class, which in the adapter must become self.entity.

148 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

Adapters defined in the library

some basic entity adapter implementations, for interfaces used in the framework itself.

class cubicweb.entities.adapters.CWUserRDFAdapter(_cw, **kwargs)

triples()

return sequence of 3-tuple of rdflib identifiers

class cubicweb.entities.adapters.EntityRDFAdapter(_cw, **kwargs)
EntityRDFAdapter is to be specialized for each entity that wants to be converted to RDF using the mechanism
from cubicweb.rdf

triples()

return sequence of 3-tuple of rdflib identifiers

uri

<wrapped by the cachedproperty decorator>

class cubicweb.entities.adapters.EntityRQLInterfaceAdapter(_cw, **kwargs)

class cubicweb.entities.adapters.IDownloadableAdapter(_cw, **kwargs)
interface for downloadable entities

download_content_type()

return MIME type (unicode) of the downloadable content

download_data()

return actual data (bytes) of the downloadable content

download_encoding()

return encoding (unicode) of the downloadable content

download_file_name()

return file name (unicode) of the downloadable content

download_url(**kwargs)
return a URL to download entity’s content

It should be a unicode object containing url-encoded ASCII.

class cubicweb.entities.adapters.IDublinCoreAdapter(_cw, **kwargs)

authors()

Return a suitable description for the author(s) of the entity

creator()

Return a suitable description for the creator of the entity

date(date_format=None)
Return latest modification date of entity

description(format='text/plain')
Return a suitable description for entity

language()

Return language used by this entity (translated)

5.4. Data as objects 149

Cubicweb Documentation, Release 3.38.10

long_title()

Return a more detailled title for entity

title()

Return a suitable unicode title for entity

type(form='')
Return the display name for the type of entity (translated)

class cubicweb.entities.adapters.IEmailableAdapter(_cw, **kwargs)

allowed_massmail_keys()

returns a set of allowed email substitution keys

The default is to return the entity’s attribute list but you might override this method to allow extra keys. For
instance, a Person class might want to return a companyname key.

as_email_context()

returns the dictionary as used by the sendmail controller to build email bodies.

NOTE: the dictionary keys should match the list returned by the allowed_massmail_keys method.

class cubicweb.entities.adapters.IFTIndexableAdapter(_cw, **kwargs)
standard adapter to handle fulltext indexing

fti_containers(_done=None)
return the list of entities to index when handling self.entity

The actual list of entities depends on fulltext_container usage in the datamodel definition

get_words()

used by the full text indexer to get words to index

this method should only be used on the repository side since it depends on the logilab.database package

Return type list

Returns the list of indexable word of this entity

fti_containers(_done=None)
return the list of entities to index when handling self.entity

The actual list of entities depends on fulltext_container usage in the datamodel definition

get_words()

used by the full text indexer to get words to index

this method should only be used on the repository side since it depends on the logilab.database package

Return type list

Returns the list of indexable word of this entity

class cubicweb.entities.adapters.INotifiableAdapter(_cw, **kwargs)

notification_references(view)
used to control References field of email send on notification for this entity. view is the notification view.

Should return a list of eids which can be used to generate message identifiers of previously sent email(s)

class cubicweb.entities.adapters.ISerializableAdapter(_cw, **kwargs)
Adapter to serialize an entity to a bare python structure that may be directly serialized to e.g. JSON.

150 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

class cubicweb.entities.adapters.ITreeAdapter(_cw, **kwargs)
This adapter provides a tree interface.

It has to be overriden to be configured using the tree_relation, child_role and parent_role class attributes to benefit
from this default implementation.

This class provides the following methods:

children(entities=True, sametype=False)
Return children entities.

According to the entities parameter, return entity objects or the equivalent result set.

children_rql()

Returns RQL to get the children of the entity.

different_type_children(entities=True)
Return children entities of different type as this entity.

According to the entities parameter, return entity objects or the equivalent result set.

is_leaf()

Returns True if the entity does not have any children.

is_root()

Returns true if the entity is root of the tree (e.g. has no parent).

iterchildren(_done=None)
Return an iterator over the item’s children.

iterparents(strict=True)
Return an iterator on the parents of the entity.

parent()

Returns the parent entity if any, else None (e.g. if we are on the root).

path(**kwargs)
Returns the list of eids from the root object to this object.

prefixiter(_done=None)
Return an iterator over the item’s descendants in a prefixed order.

root()

Return the root entity of the tree.

same_type_children(entities=True)
Return children entities of the same type as this entity.

According to the entities parameter, return entity objects or the equivalent result set.

class cubicweb.entities.adapters.IUserFriendlyCheckConstraint(*args, **kwargs)

class cubicweb.entities.adapters.IUserFriendlyError(*args, **kwargs)

class cubicweb.entities.adapters.IUserFriendlyUniqueTogether(*args, **kwargs)

More are defined in web/views.

5.4. Data as objects 151

Cubicweb Documentation, Release 3.38.10

5.4.7 How to use entities objects and adapters

The previous chapters detailed the classes and methods available to the developer at the so-called ORM level. However
they say little about the common patterns of usage of these objects.

Entities objects (and their adapters) are used in the repository and web sides of CubicWeb. On the repository side of
things, one should manipulate them in Hooks and Operations.

Hooks and Operations provide support for the implementation of rules such as computed attributes, coherency invari-
ants, etc (they play the same role as database triggers, but in a way that is independent of the actual data sources).

So a lot of an application’s business rules will be written in Hooks (or Operations).

On the web side, views also typically operate using entity objects. Obvious entity methods for use in views are the
Dublin Core methods like dc_title. For separation of concerns reasons, one should ensure no ui logic pervades the
entities level, and also no business logic should creep into the views.

In the duration of a transaction, entities objects can be instantiated many times, in views and hooks, even for the
same database entity. For instance, in a classic CubicWeb deployment setup, the repository and the web front-end are
separated process communicating over the wire. There is no way state can be shared between these processes (there is
a specific API for that). Hence, it is not possible to use entity objects as messengers between these components of an
application. It means that an attribute set as in obj.x = 42, whether or not x is actually an entity schema attribute,
has a short life span, limited to the hook, operation or view within which the object was built.

Setting an attribute or relation value can be done in the context of a Hook/Operation, using the obj.cw_set(x=42)
notation or a plain RQL SET expression.

In views, it would be preferable to encapsulate the necessary logic in a method of an adapter for the concerned entity
class(es). But of course, this advice is also reasonable for Hooks/Operations, though the separation of concerns here
is less stringent than in the case of views.

This leads to the practical role of objects adapters: it’s where an important part of the application logic lies (the other
part being located in the Hook/Operations).

5.4.8 Anatomy of an entity class

We can look now at a real life example coming from the tracker cube. Let us begin to study the entities/project.py
content.

from cubicweb.entities.adapters import ITreeAdapter

class ProjectAdapter(ITreeAdapter):
__select__ = is_instance('Project')
tree_relation = 'subproject_of'

class Project(AnyEntity):
__regid__ = 'Project'
fetch_attrs, cw_fetch_order = fetch_config(('name', 'description',

'description_format', 'summary'))

TICKET_DEFAULT_STATE_RESTR = 'S name IN ("created","identified","released","scheduled
→˓")'

def dc_title(self):
return self.name

152 Chapter 5. Backend Development

http://en.wikipedia.org/wiki/Object-relational_mapping
https://forge.extranet.logilab.fr/cubicweb/cubes/tracker/

Cubicweb Documentation, Release 3.38.10

The fact that the Project entity type implements an ITree interface is materialized by the ProjectAdapter class
(inheriting the pre-defined ITreeAdapter whose __regid__ is of course ITree), which will be selected on Project
entity types because of its selector. On this adapter, we redefine the tree_relation attribute of the ITreeAdapter
class.

This is typically used in views concerned with the representation of tree-like structures (CubicWeb provides several
such views).

It is important that the views themselves try not to implement this logic, not only because such views would be hardly
applyable to other tree-like relations, but also because it is perfectly fine and useful to use such an interface in Hooks.

In fact, Tree nature is a property of the data model that cannot be fully and portably expressed at the level of database
entities (think about the transitive closure of the child relation). This is a further argument to implement it at entity
class level.

fetch_attrs configures which attributes should be pre-fetched when using ORM methods retrieving entity of this
type. In a same manner, the cw_fetch_order is a class method allowing to control sort order. More on this in Loaded
attributes and default sorting management.

We can observe the big TICKET_DEFAULT_STATE_RESTR is a pure application domain piece of data. There is, of
course, no limitation to the amount of class attributes of this kind.

The dc_title method provides a (unicode string) value likely to be consumed by views, but note that here we do not
care about output encodings. We care about providing data in the most universal format possible, because the data could
be used by a web view (which would be responsible of ensuring XHTML compliance), or a console or file oriented
output (which would have the necessary context about the needed byte stream encoding).

Note: The Dublin Core dc_xxx methods are not moved to an adapter as they are extremely prevalent in CubicWeb and
assorted cubes and should be available for all entity types.

Let us now dig into more substantial pieces of code, continuing the Project class.

def latest_version(self, states=('published',), reverse=None):
"""returns the latest version(s) for the project in one of the given
states.

when no states specified, returns the latest published version.
"""
order = 'DESC'
if reverse is not None:

warn('reverse argument is deprecated',
DeprecationWarning, stacklevel=1)

if reverse:
order = 'ASC'

rset = self.versions_in_state(states, order, True)
if rset:

return rset.get_entity(0, 0)
return None

def versions_in_state(self, states, order='ASC', limit=False):
"""returns version(s) for the project in one of the given states, sorted
by version number.

If limit is true, limit result to one version.
If reverse, versions are returned from the smallest to the greatest.

(continues on next page)

5.4. Data as objects 153

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

"""
if limit:

order += ' LIMIT 1'
rql = 'Any V,N ORDERBY version_sort_value(N) %s ' \

'WHERE V num N, V in_state S, S name IN (%s), ' \
'V version_of P, P eid %%(p)s' % (order, ','.join(repr(s) for s in states))

return self._cw.execute(rql, {'p': self.eid})

These few lines exhibit the important properties we want to outline:

• entity code is concerned with the application domain

• it is NOT concerned with database consistency (this is the realm of Hooks/Operations); in other words, it assumes
a consistent world

• it is NOT (directly) concerned with end-user interfaces

• however it can be used in both contexts

• it does not create or manipulate the internal object’s state

• it plays freely with RQL expression as needed

• it is not concerned with internationalization

• it does not raise exceptions

5.5 Core APIs

5.5.1 Request and ResultSet methods

Those are methods you’ll find on both request objects and on repository session.

Request methods

URL handling:

• build_url(*args, **kwargs), returns an absolute URL based on the given arguments. The controller supposed to
handle the response, can be specified through the first positional parameter (the connection is theoretically done
automatically :).

Data formatting:

• format_date(date, date_format=None, time=False) returns a string for a date time according to instance’s con-
figuration

• format_time(time) returns a string for a date time according to instance’s configuration

And more. . . :

• tal_render(template, variables), renders a precompiled page template with variables in the given dictionary as
context

154 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

Result set methods

• get_entity(row, col), returns the entity corresponding to the data position in the result set

• complete_entity(row, col, skip_bytes=True), is equivalent to get_entity but also call the method complete() on the
entity before returning it

5.6 Repository customization

5.6.1 Sessions

Sessions are objects linked to an authenticated user. The Session.new_cnx method returns a new Connection linked to
that session.

5.6.2 Connections

Connections provide the .execute method to query the data sources, along with .commit and .rollback methods for
transaction management.

Kinds of connections

There are two kinds of connections.

• normal connections are the most common: they are related to users and carry security checks coming with user
credentials

• internal connections have all the powers; they are also used in only a few situations where you don’t already have
an adequate session at hand, like: user authentication, data synchronisation in multi-source contexts

Normal connections are typically named _cw in most appobjects or sometimes just session.

Internal connections are available from the Repository object and are to be used like this:

with self.repo.internal_cnx() as cnx:
do_stuff_with(cnx)
cnx.commit()

Connections should always be used as context managers, to avoid leaks.

Python/RQL API

The Python API developped to interface with RQL is inspired from the standard db-api, but since execute returns its
results directly, there is no cursor concept.

execute(rqlstring, args=None, build_descr=True)

rqlstring the RQL query to execute (unicode)

args if the query contains substitutions, a dictionary containing the values to use

The Connection object owns the methods commit and rollback. You should never need to use them during the devel-
opment of the web interface based on the CubicWeb framework as it determines the end of the transaction depending
on the query execution success. They are however useful in other contexts such as tests or custom controllers.

5.6. Repository customization 155

Cubicweb Documentation, Release 3.38.10

Note: If a query generates an error related to security (Unauthorized) or to integrity (ValidationError), the
transaction can still continue but you won’t be able to commit it, a rollback will be necessary to start a new transaction.

Also, a rollback is automatically done if an error occurs during commit.

Note: A ValidationError has a entity attribute. In CubicWeb, this atttribute is set to the entity’s eid (not a reference
to the entity itself).

Executing RQL queries from a view or a hook

When you’re within code of the web interface, the Connection is handled by the request object. You should not have
to access it directly, but use the execute method directly available on the request, eg:

rset = self._cw.execute(rqlstring, kwargs)

Similarly, on the server side (eg in hooks), there is no request object (since you’re directly inside the data-server), so
you’ll have to use the execute method of the Connection object.

Proper usage of .execute

Let’s say you want to get T which is in configuration C, this translates to:

self._cw.execute('Any T WHERE T in_conf C, C eid %s' % entity.eid)

But it must be written in a syntax that will benefit from the use of a cache on the RQL server side:

self._cw.execute('Any T WHERE T in_conf C, C eid %(x)s', {'x': entity.eid})

The syntax tree is built once for the “generic” RQL and can be re-used with a number of different eids. The rql IN
operator is an exception to this rule.

self._cw.execute('Any T WHERE T in_conf C, C name IN (%s)'
% ','.join(['foo', 'bar']))

Alternatively, some of the common data related to an entity can be obtained from the entity.related() method (which
is used under the hood by the ORM when you use attribute access notation on an entity to get a relation. The initial
request would then be translated to:

entity.related('in_conf', 'object')

Additionally this benefits from the fetch_attrs policy (see Loaded attributes and default sorting management) optionally
defined on the class element, which says which attributes must be also loaded when the entity is loaded through the
ORM.

156 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

The ResultSet API

ResultSet instances are a very commonly manipulated object. They have a rich API as seen below, but we would like
to highlight a bunch of methods that are quite useful in day-to-day practice:

• __str__() (applied by print) gives a very useful overview of both the underlying RQL expression and the data
inside; unavoidable for debugging purposes

• printable_rql() returns a well formed RQL expression as a string; it is very useful to build views

• entities() returns a generator on all entities of the result set

• get_entity(row, col) gets the entity at row, col coordinates; one of the most used result set methods

class cubicweb.rset.ResultSet(results, rql, args=None, description=None, variables=None)
A result set wraps a RQL query result. This object implements partially the list protocol to allow direct use as a
list of result rows.

Parameters
• rowcount (int) – number of rows in the result

• rows (list) – list of rows of result

• description (list) – result’s description, using the same structure as the result itself

• rql (str or unicode) – the original RQL query string

all(col=0)
iter on entities with eid in the col column of the result set

column_types(**kwargs)
return the list of different types in the column with the given col

Parameters col (int) – the index of the desired column

Return type list

Returns the different entities type found in the column

complete_entity(row, col=0, skip_bytes=True)
short cut to get an completed entity instance for a particular row (all instance’s attributes have been fetched)

description_struct(**kwargs)
return a list describing sequence of results with the same description, e.g. : [[0, 4, (‘Bug’,)] [[0, 4, (‘Bug’,),
[5, 8, (‘Story’,)] [[0, 3, (‘Project’, ‘Version’,)]]

entities(col=0)
iter on entities with eid in the col column of the result set

filtered_rset(filtercb, col=0)
filter the result set according to a given filtercb

Parameters
• filtercb (callable(entity)) – a callable which should take an entity as argument and

return False if it should be skipped, else True

• col (int) – the column index

Return type ResultSet

5.6. Repository customization 157

Cubicweb Documentation, Release 3.38.10

first(col=0)
Retrieve the first entity from the query.

If the result set is empty, raises NoResultError.

Parameters col (int) – The column localising the entity in the unique row

Returns the partially initialized Entity instance

get_entity(**kwargs)
convenience method for query retrieving a single entity, returns a partially initialized Entity instance.

Warning: Due to the cache wrapping this function, you should NEVER give row as a named parameter
(i.e. rset.get_entity(0, 1) is OK but rset.get_entity(row=0, col=1) isn’t)

Parameters row,col (int, int) – row and col numbers localizing the entity among the result’s
table

Returns the partially initialized Entity instance

iter_rows_with_entities()

iterates over rows, and for each row eids are converted to plain entities

last(col=0)
Retrieve the last entity from the query.

If the result set is empty, raises NoResultError.

Parameters col (int) – The column localising the entity in the unique row

Returns the partially initialized Entity instance

limit(limit, offset=0, inplace=False)
limit the result set to the given number of rows optionally starting from an index different than 0

Parameters
• limit (int) – the maximum number of results

• offset (int) – the offset index

• inplace (bool) – if true, the result set is modified in place, else a new result set is returned
and the original is left unmodified

Return type ResultSet

limited_rql()

returns a printable rql for the result set associated to the object, with limit/offset correctly set according to
maximum page size and currently displayed page when necessary

one(col=0)
Retrieve exactly one entity from the query.

If the result set is empty, raises NoResultError. If the result set has more than one row, raises
MultipleResultsError.

Parameters col (int) – The column localising the entity in the unique row

Returns the partially initialized Entity instance

158 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

possible_actions(**kwargs)
Return possible actions on this result set. Should always be called with the same arguments so it may be
computed only once.

printable_rql()

return the result set’s origin rql as a string, with arguments substitued

related_entity(**kwargs)
given an cell of the result set, try to return a (entity, relation name) tuple to which this cell is linked.

This is especially useful when the cell is an attribute of an entity, to get the entity to which this attribute
belongs to.

searched_text(**kwargs)
returns the searched text in case of full-text search

Returns searched text or None if the query is not a full-text query

sorted_rset(keyfunc, reverse=False, col=0)
sorts the result set according to a given keyfunc

Parameters
• keyfunc (callable(entity)) – a callable which should take an entity as argument and

return the value used to compare and sort

• reverse (bool) – if the result should be reversed

• col (int) – the column index. if col = -1, the whole row are used

Return type ResultSet

split_rset(keyfunc=None, col=0, return_dict=False)
splits the result set in multiple result sets according to a given key

Parameters
• keyfunc (callable(entity or FinalType)) – a callable which should take a value

of the rset in argument and return the value used to group the value. If not define, raw value
of the specified columns is used.

• col (int) – the column index. if col = -1, the whole row are used

• return_dict (Boolean) – If true, the function return a mapping (key -> rset) instead of
a list of rset

Return type List of ResultSet or mapping of ResultSet

syntax_tree(**kwargs)
Return the cached syntax tree (rql.stmts.Union) for the originating query.

You can expect it to have solutions computed and it will be properly annotated. Since this is a cached shared
object, you must not modify it.

transformed_rset(transformcb)
the result set according to a given column types

Parameters
• transformcb – a callable which should take a row and its type description as parameters,

and return the transformed row and type description.

• col (int) – the column index

5.6. Repository customization 159

Cubicweb Documentation, Release 3.38.10

Return type ResultSet

Authentication and management of sessions

The authentication process is a ballet involving a few dancers:

• through its get_session method the top-level application object (the CubicWebPublisher) will open a session
whenever a web request comes in; it asks the session manager to open a session (giving the web request object
as context) using open_session

– the session manager asks its authentication manager (which is a component) to authenticate the request
(using authenticate)

∗ the authentication manager asks, in order, to its authentication information retrievers, a login and an
opaque object containing other credentials elements (calling authentication_information), giving the
request object each time

· the default retriever (named LoginPasswordRetriever) will in turn defer login and password fetch-
ing to the request object (which, depending on the authentication mode (cookie or http), will do
the appropriate things and return a login and a password)

∗ the authentication manager, on success, asks the Repository object to connect with the found credentials
(using connect)

· the repository object asks authentication to all of its sources which support the CWUser entity
with the given credentials; when successful it can build the cwuser entity, from which a regular
Session object is made; it returns the session id

· the source in turn will delegate work to an authentifier class that defines the ultimate authenticate
method (for instance the native source will query the database against the provided credentials)

∗ the authentication manager, on success, will call back _all_ retrievers with authenticated and return its
authentication data (on failure, it will try the anonymous login or, if the configuration forbids it, raise
an AuthenticationError)

Writing authentication plugins

Sometimes CubicWeb’s out-of-the-box authentication schemes (cookie and http) are not sufficient. Nowadays there is a
plethora of such schemes and the framework cannot provide them all, but as the sequence above shows, it is extensible.

Two levels have to be considered when writing an authentication plugin: the web client and the repository.

We invented a scenario where it makes sense to have a new plugin in each side: some middleware will do pre-
authentication and under the right circumstances add a new HTTP x-foo-user header to the query before it reaches
the CubicWeb instance. For a concrete example of this, see the trustedauth cube.

Repository authentication plugins

On the repository side, it is possible to register a source authentifier using the following kind of code:

from cubicweb.server.sources import native

class FooAuthentifier(native.LoginPasswordAuthentifier):
""" a source authentifier plugin
if 'foo' in authentication information, no need to check
password

(continues on next page)

160 Chapter 5. Backend Development

https://forge.extranet.logilab.fr/cubicweb/cubes/trustedauth

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

"""
auth_rql = 'Any X WHERE X is CWUser, X login %(login)s'

def authenticate(self, session, login, **kwargs):
"""return CWUser eid for the given login
if this account is defined in this source,
else raise `AuthenticationError`
"""
session.debug('authentication by %s', self.__class__.__name__)
if 'foo' not in kwargs:

return super(FooAuthentifier, self).authenticate(session, login, **kwargs)
try:

rset = session.execute(self.auth_rql, {'login': login})
return rset[0][0]

except Exception, exc:
session.debug('authentication failure (%s)', exc)

raise AuthenticationError('foo user is unknown to us')

Since repository authentifiers are not appobjects, we have to register them through a server_startup hook.

class ServerStartupHook(hook.Hook):
""" register the foo authenticator """
__regid__ = 'fooauthenticatorregisterer'
events = ('server_startup',)

def __call__(self):
self.debug('registering foo authentifier')
self.repo.system_source.add_authentifier(FooAuthentifier())

Web authentication plugins

class XFooUserRetriever(authentication.LoginPasswordRetriever):
""" authenticate by the x-foo-user http header
or just do normal login/password authentication
"""
__regid__ = 'x-foo-user'
order = 0

def authentication_information(self, req):
"""retrieve authentication information from the given request, raise
NoAuthInfo if expected information is not found
"""
self.debug('web authenticator building auth info')
try:

login = req.get_header('x-foo-user')
if login:

return login, {'foo': True}
else:

return super(XFooUserRetriever, self).authentication_information(self,␣
→˓req)

(continues on next page)

5.6. Repository customization 161

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

except Exception, exc:
self.debug('web authenticator failed (%s)', exc)

raise authentication.NoAuthInfo()

def authenticated(self, retriever, req, cnx, login, authinfo):
"""callback when return authentication information have opened a
repository connection successfully. Take care req has no session
attached yet, hence req.execute isn't available.

Here we set a flag on the request to indicate that the user is
foo-authenticated. Can be used by a selector
"""
self.debug('web authenticator running post authentication callback')
cnx.foo_user = authinfo.get('foo')

In the authenticated method we add (in an admitedly slightly hackish way) an attribute to the connection object. This,
in turn, can be used to build a selector dispatching on the fact that the user was preauthenticated or not.

@objectify_selector
def foo_authenticated(cls, req, rset=None, **kwargs):

if hasattr(req.cnx, 'foo_user') and req.foo_user:
return 1

return 0

Full Session and Connection API

class cubicweb.server.session.Connection(repo, user)
Repository Connection

Holds all connection related data

Database connection resources:

hooks_in_progress, boolean flag telling if the executing query is coming from a repoapi connec-
tion or is a query from within the repository (e.g. started by hooks)

cnxset, the connections set to use to execute queries on sources. If the transaction is read only,
the connection set may be freed between actual queries. This allows multiple connections with a
reasonably low connection set pool size.

mode, string telling the connections set handling mode, may be one of ‘read’ (connections set may
be freed), ‘write’ (some write was done in the connections set, it can’t be freed before end of the
transaction), ‘transaction’ (we want to keep the connections set during all the transaction, with or
without writing)

Shared data:

data is a dictionary bound to the underlying session, who will be present for the life time of the
session. This may be useful for web clients that rely on the server for managing bits of session-
scoped data.

transaction_data is a dictionary cleared at the end of the transaction. Hooks and operations may
put arbitrary data in there.

Internal state:

162 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

pending_operations, ordered list of operations to be processed on commit/rollback

commit_state, describing the transaction commit state, may be one of None (not yet committing),
‘precommit’ (calling precommit event on operations), ‘postcommit’ (calling postcommit event on
operations), ‘uncommitable’ (some ValidationError or Unauthorized error has been raised
during the transaction and so it must be rolled back).

Hooks controls:

deny_all_hooks_but(*categories)
Context manager to disable all hooks but those in the given categories.

allow_all_hooks_but(*categories)
Context manager to enable all hooks but those in the given categories.

Security level Management:

read_security and write_security, boolean flags telling if read/write security is currently ac-
tivated.

5.6.3 Hooks and Operations

Generalities

Paraphrasing the emacs documentation, let us say that hooks are an important mechanism for customizing an appli-
cation. A hook is basically a list of functions to be called on some well-defined occasion (this is called running the
hook).

Hooks

In CubicWeb, hooks are subclasses of the Hook class. They are selected over a set of pre-defined events (and pos-
sibly more conditions, hooks being selectable appobjects like views and components). They should implement a
__call__() method that will be called when the hook is triggered.

There are two families of events: data events (before / after any individual update of an entity / or a relation in the
repository) and server events (such as server startup or shutdown). In a typical application, most of the hooks are
defined over data events.

Also, some Operation may be registered by hooks, which will be fired when the transaction is commited or rolled
back.

The purpose of data event hooks is usually to complement the data model as defined in the schema, which is static by
nature and only provide a restricted builtin set of dynamic constraints, with dynamic or value driven behaviours. For
instance they can serve the following purposes:

• enforcing constraints that the static schema cannot express (spanning several entities/relations, exotic value ranges
and cardinalities, etc.)

• implement computed attributes

It is functionally equivalent to a database trigger, except that database triggers definition languages are not standardized,
hence not portable (for instance, PL/SQL works with Oracle and PostgreSQL but not Sqlite).

Hint: It is a good practice to write unit tests for each hook. See an example in Unit test by example

5.6. Repository customization 163

https://www.gnu.org/software/emacs/manual/html_node/emacs/Hooks.html
http://en.wikipedia.org/wiki/Database_trigger

Cubicweb Documentation, Release 3.38.10

Operations

Operations are subclasses of the Operation class that may be created by hooks and scheduled to happen on precommit,
postcommit or rollback event (i.e. respectivly before/after a commit or before a rollback of a transaction).

Hooks are being fired immediately on data operations, and it is sometime necessary to delay the actual work down
to a time where we can expect all information to be there, or when all other hooks have run (though take care since
operations may themselves trigger hooks). Also while the order of execution of hooks is data dependant (and thus hard
to predict), it is possible to force an order on operations.

So, for such case where you may miss some information that may be set later in the transaction, you should instantiate
an operation in the hook.

Operations may be used to:

• implements a validation check which needs that all relations be already set on an entity

• process various side effects associated with a transaction such as filesystem udpates, mail notifications, etc.

Events

Hooks are mostly defined and used to handle dataflow operations. It means as data gets in (entities added, updated,
relations set or unset), specific events are issued and the Hooks matching these events are called.

You can get the event that triggered a hook by accessing its event attribute.

Entity modification related events

When called for one of these events, hook will have an entity attribute containing the entity instance.

• before_add_entity, before_update_entity:

On those events, you can access the modified attributes of the entity using the entity.cw_edited dictionary. The
values can be modified and the old values can be retrieved.

If you modify the entity.cw_edited dictionary in the hook, that is before the database operations take place, you
will avoid the need to process a whole new rql query and the underlying backend query (eg usually sql) will
contain the modified data. For example:

self.entity.cw_edited['age'] = 42

will modify the age before it is written to the backend storage.

Similarly, removing an attribute from cw_edited will cancel its modification:

del self.entity.cw_edited['age']

On a before_update_entity event, you can access the old and new values:

old, new = entity.cw_edited.oldnewvalue('age')

• after_add_entity, after_update_entity

On those events, you can get the list of attributes that were modified using the entity.cw_edited dictionary, but
you can not modify it or get the old value of an attribute.

• before_delete_entity, after_delete_entity

On those events, the entity has no cw_edited dictionary.

164 Chapter 5. Backend Development

http://en.wikipedia.org/wiki/Dataflow

Cubicweb Documentation, Release 3.38.10

Note: self.entity.cw_set(age=42) will set the age attribute to 42. But to do so, it will generate a rql query that will
have to be processed, hence may trigger some hooks, etc. This could lead to infinitely looping hooks.

Relation modification related events

When called for one of these events, hook will have eidfrom, rtype, eidto attributes containing respectively the eid of
the subject entity, the relation type and the eid of the object entity.

• before_add_relation, before_delete_relation

On those events, you can still get the original relation by issuing a rql query.

• after_add_relation, after_delete_relation

Specific selectors are shipped for these kinds of events, see in particular match_rtype.

Also note that relations can be added or deleted, but not updated.

Non data events

Hooks called on server start/maintenance/stop event (e.g. server_startup, server_maintenance, be-
fore_server_shutdown, server_shutdown) have a repo attribute, but their `_cw` attribute is None. The server_startup
is called on regular startup, while server_maintenance is called on cubicweb-ctl upgrade or shell commands.
server_shutdown is called anyway but connections to the native source is impossible; before_server_shutdown handles
that.

Hooks called on backup/restore event (eg server_backup, server_restore) have a repo and a timestamp attributes, but
their `_cw` attribute is None.

API

Hooks control

It is sometimes convenient to explicitly enable or disable some hooks. For instance if you want to disable some integrity
checking hook. This can be controlled more finely through the category class attribute, which is a string giving a
category name. One can then uses the deny_all_hooks_but() and allow_all_hooks_but() context managers to
explicitly enable or disable some categories.

The existing categories are:

• security, security checking hooks

• worfklow, workflow handling hooks

• metadata, hooks setting meta-data on newly created entities

• notification, email notification hooks

• integrity, data integrity checking hooks

• activeintegrity, data integrity consistency hooks, that you should never want to disable

• syncsession, hooks synchronizing existing sessions

• syncschema, hooks synchronizing instance schema (including the physical database)

• email, email address handling hooks

5.6. Repository customization 165

Cubicweb Documentation, Release 3.38.10

• bookmark, bookmark entities handling hooks

Nothing precludes one to invent new categories and use existing mechanisms to filter them in or out.

Hooks specific predicates

class cubicweb.server.hook.match_rtype(*expected, **more)
accept if the relation type is found in expected ones. Optional named parameters frometypes and toetypes can be
used to restrict target subject and/or object entity types of the relation.

Parameters
• *expected – possible relation types

• frometypes – candidate entity types as subject of relation

• toetypes – candidate entity types as object of relation

class cubicweb.server.hook.match_rtype_sets(*expected)
accept if the relation type is in one of the sets given as initializer argument. The goal of this predicate is that it
keeps reference to original sets, so modification to thoses sets are considered by the predicate. For instance

MYSET = set()

class Hook1(Hook):
__regid__ = 'hook1'
__select__ = Hook.__select__ & match_rtype_sets(MYSET)
...

class Hook2(Hook):
__regid__ = 'hook2'
__select__ = Hook.__select__ & match_rtype_sets(MYSET)

Client code can now change MYSET, this will changes the selection criteria of Hook1 and Hook1.

Hooks and operations classes

class cubicweb.server.hook.Hook(req, event, **kwargs)
Base class for hook.

Hooks being appobjects like views, they have a __regid__ and a __select__ class attribute. Like all appobjects,
hooks have the self._cw attribute which represents the current connection. In entity hooks, a self.entity attribute
is also present.

The events tuple is used by the base class selector to dispatch the hook on the right events. It is possible to
dispatch on multiple events at once if needed (though take care as hook attribute may vary as described above).

Note: Do not forget to extend the base class selectors as in:

class MyHook(Hook):
__regid__ = 'whatever'
__select__ = Hook.__select__ & is_instance('Person')

else your hooks will be called madly, whatever the event.

166 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

class cubicweb.server.hook.Operation(cnx, **kwargs)
Base class for operations.

Operation may be instantiated in the hooks’ __call__ method. It always takes a connection object as first argument
(accessible as .cnx from the operation instance), and optionally all keyword arguments needed by the operation.
These keyword arguments will be accessible as attributes from the operation instance.

An operation is triggered on connections set events related to commit / rollback transations. Possible events are:

• precommit:

the transaction is being prepared for commit. You can freely do any heavy computation, raise an exception
if the commit can’t go. or even add some new operations during this phase. If you do anything which has
to be reverted if the commit fails afterwards (eg altering the file system for instance), you’ll have to support
the ‘revertprecommit’ event to revert things by yourself

• revertprecommit:

if an operation failed while being pre-commited, this event is triggered for all operations which had their
‘precommit’ event already fired to let them revert things (including the operation which made the commit
fail)

• rollback:

the transaction has been either rolled back either:

– intentionally

– a ‘precommit’ event failed, in which case all operations are rolled back once ‘revertprecommit” has
been called

• postcommit:

the transaction is over. All the ORM entities accessed by the earlier transaction are invalid. If you need
to work on the database, you need to start a new transaction, for instance using a new internal connection,
which you will need to commit.

For an operation to support an event, one has to implement the <event name>_event method with no arguments.

The order of operations may be important, and is controlled according to the insert_index’s method output (whose
implementation vary according to the base hook class used).

class cubicweb.server.hook.LateOperation(cnx, **kwargs)
special operation which should be called after all possible (ie non late) operations

class cubicweb.server.hook.DataOperationMixIn(*args, **kwargs)
Mix-in class to ease applying a single operation on a set of data, avoiding creating as many operations as there
are individual modifications. The body of the operation must then iterate over the values that have been stored
in a single operation instance.

You should try to use this instead of creating on operation for each value, since handling operations becomes
costly on massive data import.

Usage looks like:

class MyEntityHook(Hook):
__regid__ = 'my.entity.hook'
__select__ = Hook.__select__ & is_instance('MyEntity')
events = ('after_add_entity',)

def __call__(self):
MyOperation.get_instance(self._cw).add_data(self.entity)

(continues on next page)

5.6. Repository customization 167

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

class MyOperation(DataOperationMixIn, Operation):
def precommit_event(self):

for bucket in self.get_data():
process(bucket)

You can modify the containercls class attribute, which defines the container class that should be instantiated to
hold payloads. An instance is created on instantiation, and then the add_data() method will add the given data
to the existing container. Default to a set. Give list if you want to keep arrival ordering. You can also use another
kind of container by redefining _build_container() and add_data()

More optional parameters can be given to the get_instance operation, that will be given to the operation con-
structor (for obvious reasons those parameters should not vary accross different calls to this method for a given
operation).

Note: For sanity reason get_data will reset the operation, so that once the operation has started its treatment, if
some hook want to push additional data to this same operation, a new instance will be created (else that data has
a great chance to be never treated). This implies:

• you should always call get_data when starting treatment

• you should never call get_data for another reason.

Example using dataflow hooks

We will use a very simple example to show hooks usage. Let us start with the following schema.

class Person(EntityType):
age = Int(required=True)

We would like to add a range constraint over a person’s age. Let’s write an hook (supposing yams can not handle this
natively, which is wrong). It shall be placed into mycube/hooks.py. If this file were to grow too much, we can easily
have a mycube/hooks/. . . package containing hooks in various modules.

from cubicweb import ValidationError
from cubicweb.predicates import is_instance
from cubicweb.server.hook import Hook

class PersonAgeRange(Hook):
__regid__ = 'person_age_range'
__select__ = Hook.__select__ & is_instance('Person')
events = ('before_add_entity', 'before_update_entity')

def __call__(self):
if 'age' in self.entity.cw_edited:

if 0 <= self.entity.age <= 120:
return

msg = self._cw._('age must be between 0 and 120')
raise ValidationError(self.entity.eid, {'age': msg})

In our example the base __select__ is augmented with an is_instance selector matching the desired entity type.

168 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

The events tuple is used to specify that our hook should be called before the entity is added or updated.

Then in the hook’s __call__ method, we:

• check if the ‘age’ attribute is edited

• if so, check the value is in the range

• if not, raise a validation error properly

Now let’s augment our schema with a new Company entity type with some relation to Person (in ‘mycube/schema.py’).

class Company(EntityType):
name = String(required=True)
boss = SubjectRelation('Person', cardinality='1*')
subsidiary_of = SubjectRelation('Company', cardinality='*?')

We would like to constrain the company’s bosses to have a minimum (legal) age. Let’s write an hook for this, which
will be fired when the boss relation is established (still supposing we could not specify that kind of thing in the schema).

class CompanyBossLegalAge(Hook):
__regid__ = 'company_boss_legal_age'
__select__ = Hook.__select__ & match_rtype('boss')
events = ('before_add_relation',)

def __call__(self):
boss = self._cw.entity_from_eid(self.eidto)
if boss.age < 18:

msg = self._cw._('the minimum age for a boss is 18')
raise ValidationError(self.eidfrom, {'boss': msg})

Note: We use the match_rtype selector to select the proper relation type.

The essential difference with respect to an entity hook is that there is no self.entity, but self.eidfrom and self.eidto hook
attributes which represent the subject and object eid of the relation.

Suppose we want to check that there is no cycle by the subsidiary_of relation. This is best achieved in an operation
since all relations are likely to be set at commit time.

from cubicweb.server.hook import Hook, DataOperationMixIn, Operation, match_rtype

def check_cycle(session, eid, rtype, role='subject'):
parents = set([eid])
parent = session.entity_from_eid(eid)
while parent.related(rtype, role):

parent = parent.related(rtype, role)[0]
if parent.eid in parents:

msg = session._('detected %s cycle' % rtype)
raise ValidationError(eid, {rtype: msg})

parents.add(parent.eid)

class CheckSubsidiaryCycleOp(Operation):

def precommit_event(self):
(continues on next page)

5.6. Repository customization 169

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

check_cycle(self.session, self.eidto, 'subsidiary_of')

class CheckSubsidiaryCycleHook(Hook):
__regid__ = 'check_no_subsidiary_cycle'
__select__ = Hook.__select__ & match_rtype('subsidiary_of')
events = ('after_add_relation',)

def __call__(self):
CheckSubsidiaryCycleOp(self._cw, eidto=self.eidto)

Like in hooks, ValidationError can be raised in operations. Other exceptions are usually programming errors.

In the above example, our hook will instantiate an operation each time the hook is called, i.e. each time the subsidiary_of
relation is set. There is an alternative method to schedule an operation from a hook, using the get_instance() class
method.

class CheckSubsidiaryCycleHook(Hook):
__regid__ = 'check_no_subsidiary_cycle'
events = ('after_add_relation',)
__select__ = Hook.__select__ & match_rtype('subsidiary_of')

def __call__(self):
CheckSubsidiaryCycleOp.get_instance(self._cw).add_data(self.eidto)

class CheckSubsidiaryCycleOp(DataOperationMixIn, Operation):

def precommit_event(self):
for eid in self.get_data():

check_cycle(self.session, eid, self.rtype)

Here, we call add_data() so that we will simply accumulate eids of entities to check at the end in a single CheckSub-
sidiaryCycleOp operation. Values are stored in a set associated to the ‘check_no_subsidiary_cycle’ transaction data
key. The set initialization and operation creation are handled nicely by add_data().

A more realistic example can be found in the advanced tutorial chapter Step 2: security propagation in hooks.

Inter-instance communication

If your application consists of several instances, you may need some means to communicate between them. Cu-
bicweb provides a publish/subscribe mechanism using ØMQ. In order to use it, use add_subscription() on the
repo.app_instances_bus object. The callback will get the message (as a list). A message can be sent by calling
publish() on repo.app_instances_bus. The first element of the message is the topic which is used for filtering and
dispatching messages.

class FooHook(hook.Hook):
events = ('server_startup',)
__regid__ = 'foo_startup'

def __call__(self):
def callback(msg):

self.info('received message: %s', ' '.join(msg))
self.repo.app_instances_bus.add_subscription('hello', callback)

170 Chapter 5. Backend Development

http://www.zeromq.org/

Cubicweb Documentation, Release 3.38.10

def do_foo(self):
actually_do_foo()
self._cw.repo.app_instances_bus.publish(['hello', 'world'])

The zmq-address-pub configuration variable contains the address used by the instance for sending messages,
e.g. tcp://*:1234. The zmq-address-sub variable contains a comma-separated list of addresses to listen on, e.g.
tcp://localhost:1234, tcp://192.168.1.1:2345.

Hooks writing tips

Reminder

You should never use the entity.foo = 42 notation to update an entity. It will not do what you expect (updating the
database). Instead, use the cw_set() method or direct access to entity’s cw_edited attribute if you’re writing a hook
for ‘before_add_entity’ or ‘before_update_entity’ event.

How to choose between a before and an after event ?

before_* hooks give you access to the old attribute (or relation) values. You can also intercept and update edited values
in the case of entity modification before they reach the database.

Else the question is: should I need to do things before or after the actual modification ? If the answer is “it doesn’t
matter”, use an ‘after’ event.

Validation Errors

When a hook which is responsible to maintain the consistency of the data model detects an error, it must use a specific
exception named ValidationError. Raising anything but a (subclass of) ValidationError is a programming error.
Raising it entails aborting the current transaction.

This exception is used to convey enough information up to the user interface. Hence its constructor is different from
the default Exception constructor. It accepts, positionally:

• an entity eid (not the entity itself),
• a dict whose keys represent attribute (or relation) names and values an end-user facing message (hence properly

translated) relating the problem.

raise ValidationError(earth.eid, {'sea_level': self._cw._('too high'),
'temperature': self._cw._('too hot')})

Checking for object created/deleted in the current transaction

In hooks, you can use the added_in_transaction() or deleted_in_transaction() of the session object to check
if an eid has been created or deleted during the hook’s transaction.

This is useful to enable or disable some stuff if some entity is being added or deleted.

if self._cw.deleted_in_transaction(self.eidto):
return

5.6. Repository customization 171

Cubicweb Documentation, Release 3.38.10

Peculiarities of inlined relations

Relations which are defined in the schema as inlined (see Relation type for details) are inserted in the database at the
same time as entity attributes.

This may have some side effect, for instance when creating an entity and setting an inlined relation in the same rql
query, then at before_add_relation time, the relation will already exist in the database (it is otherwise not the case).

5.6.4 Notifications management

CubicWeb provides a machinery to ease notifications handling. To use it for a notification:

• write a view inheriting from NotificationView. The usual view api is used to generated the email (plain
text) content, and additional subject() and recipients() methods are used to build the email’s subject and
recipients. NotificationView provides default implementation for both methods.

• write a hook for event that should trigger this notification, select the view (without rendering it), and give it to
cubicweb.hooks.notification.notify_on_commit() so that the notification will be sent if the transaction
succeed.

API details

class cubicweb.sobjects.notification.NotificationView(*args, **kwargs)
abstract view implementing the “email” API (eg to simplify sending notification)

cubicweb.hooks.notification.notify_on_commit(cnx, view, viewargs=None)
register a notification view (see NotificationView) to be sent at post-commit time, ie only if the transaction
has succeeded.

viewargs is an optional dictionary containing extra argument to be given to render_and_send()

5.6.5 Tasks

[WRITE ME]

• repository tasks

5.7 Tests

5.7.1 Unit tests

The CubicWeb framework provides the cubicweb.devtools.testlib.CubicWebTC test base class .

Tests shall be put into the mycube/test directory. Additional test data shall go into mycube/test/data.

It is much advised to write tests concerning entities methods, actions, hooks and operations, security. The CubicWebTC
base class has convenience methods to help test all of this.

In the realm of views, automatic tests check that views are valid XHTML. See Automatic views testing for details.

Most unit tests need a live database to work against. This is achieved by CubicWeb using automatically sqlite (bundled
with Python, see http://docs.python.org/library/sqlite3.html) as a backend.

172 Chapter 5. Backend Development

http://docs.python.org/library/sqlite3.html

Cubicweb Documentation, Release 3.38.10

The database is stored in the mycube/test/tmpdb, mycube/test/tmpdb-template files. If it does not (yet) exist, it will be
built automatically when the test suite starts.

Warning: Whenever the schema changes (new entities, attributes, relations) one must delete these two files.
Changes concerned only with entity or relation type properties (constraints, cardinalities, permissions) and generally
dealt with using the sync_schema_props_perms() function of the migration environment do not need a database
regeneration step.

Unit test by example

We start with an example extracted from the keyword cube (available from https://forge.extranet.logilab.fr/cubicweb/
cubes/keyword).

from cubicweb.devtools.testlib import CubicWebTC
from cubicweb import ValidationError

class ClassificationHooksTC(CubicWebTC):

def setup_database(self):
with self.admin_access.repo_cnx() as cnx:

group_etype = cnx.find('CWEType', name='CWGroup').one()
c1 = cnx.create_entity('Classification', name=u'classif1',

classifies=group_etype)
user_etype = cnx.find('CWEType', name='CWUser').one()
c2 = cnx.create_entity('Classification', name=u'classif2',

classifies=user_etype)
self.kw1eid = cnx.create_entity('Keyword', name=u'kwgroup', included_in=c1).

→˓eid
cnx.commit()

def test_cannot_create_cycles(self):
with self.admin_access.repo_cnx() as cnx:

kw1 = cnx.entity_from_eid(self.kw1eid)
direct obvious cycle
with self.assertRaises(ValidationError):

kw1.cw_set(subkeyword_of=kw1)
cnx.rollback()
testing indirect cycles
kw3 = cnx.execute('INSERT Keyword SK: SK name "kwgroup2", SK included_in C, '

'SK subkeyword_of K WHERE C name "classif1", K eid %(k)s'
{'k': kw1}).get_entity(0,0)

kw3.cw_set(reverse_subkeyword_of=kw1)
self.assertRaises(ValidationError, cnx.commit)

The test class defines a setup_database() method which populates the database with initial data. Each test of the
class runs with this pre-populated database.

The test case itself checks that an Operation does its job of preventing cycles amongst Keyword entities.

The create_entity method of connection (or request) objects allows to create an entity. You can link this entity to
other entities, by specifying as argument, the relation name, and the entity to link, as value. In the above example, the
Classification entity is linked to a CWEtype via the relation classifies. Conversely, if you are creating a CWEtype entity,
you can link it to a Classification entity, by adding reverse_classifies as argument.

5.7. Tests 173

https://forge.extranet.logilab.fr/cubicweb/cubes/keyword
https://forge.extranet.logilab.fr/cubicweb/cubes/keyword

Cubicweb Documentation, Release 3.38.10

Note: the commit() method is not called automatically. You have to call it explicitly if needed (notably to test
operations). It is a good practice to regenerate entities with entity_from_eid() after a commit to avoid request
cache effects.

You can see an example of security tests in the Step 1: configuring security into the schema.

It is possible to have these tests run continuously using apycot.

Managing connections or users

Since unit tests are done with the SQLITE backend and this does not support multiple connections at a time, you must
be careful when simulating security, changing users.

By default, tests run with a user with admin privileges. Connections using these credentials are accessible through the
admin_access object of the test classes.

The repo_cnx() method returns a connection object that can be used as a context manager:

admin_access is a pre-cooked session wrapping object
it is built with:
self.admin_access = self.new_access('admin')
with self.admin_access.repo_cnx() as cnx:

cnx.execute(...)
self.create_user(cnx, login='user1')
cnx.commit()

user1access = self.new_access('user1')
with user1access.web_request() as req:

req.execute(...)
req.cnx.commit()

On exit of the context manager, a rollback is issued, which releases the connection. Don’t forget to issue the
cnx.commit() calls!

Warning: Do not use references kept to the entities created with a connection from another one!

Email notifications tests

When running tests, potentially generated e-mails are not really sent but are found in the list MAILBOX of module
cubicweb.devtools.testlib.

You can test your notifications by analyzing the contents of this list, which contains objects with two attributes:

• recipients, the list of recipients

• msg, email.Message object

Let us look at a simple example from the blog cube.

from cubicweb.devtools.testlib import CubicWebTC, MAILBOX

class BlogTestsCubicWebTC(CubicWebTC):
(continues on next page)

174 Chapter 5. Backend Development

https://forge.extranet.logilab.fr/cubicweb/cubes/apycot

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

"""test blog specific behaviours"""

def test_notifications(self):
with self.admin_access.web_request() as req:

cubicweb_blog = req.create_entity('Blog', title=u'cubicweb',
description=u'cubicweb is beautiful')

blog_entry_1 = req.create_entity('BlogEntry', title=u'hop',
content=u'cubicweb hop')

blog_entry_1.cw_set(entry_of=cubicweb_blog)
blog_entry_2 = req.create_entity('BlogEntry', title=u'yes',

content=u'cubicweb yes')
blog_entry_2.cw_set(entry_of=cubicweb_blog)
self.assertEqual(len(MAILBOX), 0)
req.cnx.commit()
self.assertEqual(len(MAILBOX), 2)
mail = MAILBOX[0]
self.assertEqual(mail.subject, '[data] hop')
mail = MAILBOX[1]
self.assertEqual(mail.subject, '[data] yes')

Visible actions tests

It is easy to write unit tests to test actions which are visible to a user or to a category of users. Let’s take an example in
the conference cube.

class ConferenceActionsTC(CubicWebTC):

def setup_database(self):
with self.admin_access.repo_cnx() as cnx:

self.confeid = cnx.create_entity('Conference',
title=u'my conf',
url_id=u'conf',
start_on=date(2010, 1, 27),
end_on = date(2010, 1, 29),
call_open=True,
reverse_is_chair_at=chair,
reverse_is_reviewer_at=reviewer).eid

def test_admin(self):
with self.admin_access.web_request() as req:

rset = req.find('Conference').one()
self.assertListEqual(self.pactions(req, rset),

[('workflow', workflow.WorkflowActions),
('edit', confactions.ModifyAction),
('managepermission', actions.ManagePermissionsAction),
('addrelated', actions.AddRelatedActions),
('delete', actions.DeleteAction),
('generate_badge_action', badges.GenerateBadgeAction),
('addtalkinconf', confactions.

→˓AddTalkInConferenceAction)
])

(continues on next page)

5.7. Tests 175

https://forge.extranet.logilab.fr/cubicweb/cubes/conference

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

self.assertListEqual(self.action_submenu(req, rset, 'addrelated'),
[(u'add Track in_conf Conference object',
u'http://testing.fr/cubicweb/add/Track'
u'?__linkto=in_conf%%3A%(conf)s%%3Asubject&'
u'__redirectpath=conference%%2Fconf&'
u'__redirectvid=' % {'conf': self.confeid}),
])

You just have to execute a rql query corresponding to the view you want to test, and to compare the result of pactions()
with the list of actions that must be visible in the interface. This is a list of tuples. The first element is the action’s
__regid__, the second the action’s class.

To test actions in a submenu, you just have to test the result of action_submenu() method. The last parameter of
the method is the action’s category. The result is a list of tuples. The first element is the action’s title, and the second
element the action’s url.

5.7.2 Automatic views testing

This is done automatically with the cubicweb.devtools.testlib.AutomaticWebTest class. At cube creation
time, the mycube/test/test_mycube.py file contains such a test. The code here has to be uncommented to be usable,
without further modification.

The auto_populate method uses a smart algorithm to create pseudo-random data in the database, thus enabling the
views to be invoked and tested.

Depending on the schema, hooks and operations constraints, it is not always possible for the automatic auto_populate
to proceed.

It is possible of course to completely redefine auto_populate. A lighter solution is to give hints (fill some class attributes)
about what entities and relations have to be skipped by the auto_populate mechanism. These are:

• no_auto_populate, may contain a list of entity types to skip

• ignored_relations, may contain a list of relation types to skip

• application_rql, may contain a list of rql expressions that auto_populate cannot guess by itself; these must yield
resultsets against which views may be selected.

Warning: Take care to not let the imported AutomaticWebTest in your test module namespace, else both your
subclass and this parent class will be run.

5.7.3 Cache heavy database setup

Some test suites require a complex setup of the database that takes seconds (or even minutes) to complete. Doing the
whole setup for each individual test makes the whole run very slow. The CubicWebTC class offer a simple way to
prepare a specific database once for multiple tests. The test_db_id class attribute of your CubicWebTC subclass must
be set to a unique identifier and the pre_setup_database() class method must build the cached content. As the
pre_setup_database() method is not garanteed to be called every time a test method is run, you must not set any
class attribute to be used during test there. Databases for each test_db_id are automatically created if not already in
cache. Clearing the cache is up to the user. Cache files are found in the data/database subdirectory of your test
directory.

176 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

Warning: Take care to always have the same pre_setup_database() function for all classes with a given
test_db_id otherwise your tests will have unpredictable results depending on the first encountered one.

5.7.4 Testing on a real-life database

The CubicWebTC class uses the cubicweb.devtools.ApptestConfiguration configuration class to setup its testing envi-
ronment (database driver, user password, application home, and so on). The cubicweb.devtools module also provides
a RealDatabaseConfiguration class that will read a regular cubicweb sources file to fetch all this information but will
also prevent the database to be initalized and reset between tests.

For a test class to use a specific configuration, you have to set the _config class attribute on the class as in:

from cubicweb.devtools import RealDatabaseConfiguration
from cubicweb.devtools.testlib import CubicWebTC

class BlogRealDatabaseTC(CubicWebTC):
_config = RealDatabaseConfiguration('blog',

sourcefile='/path/to/realdb_sources')

def test_blog_rss(self):
with self.admin_access.web_request() as req:

rset = req.execute('Any B ORDERBY D DESC WHERE B is BlogEntry, '
'B created_by U, U login "logilab", B creation_date D')

self.view('rss', rset, req=req)

5.7.5 Testing with other cubes

Sometimes a small component cannot be tested all by itself, so one needs to specify other cubes to be used as part of
the the unit test suite. This is handled by the bootstrap_cubes file located under mycube/test/data. One example
from the preview cube:

card, file, preview

The format is:

• possibly several empy lines or lines starting with # (comment lines)

• one line containing a comma-separated list of cube names.

It is also possible to add a schema.py file in mycube/test/data, which will be used by the testing framework,
therefore making new entity types and relations available to the tests.

5.7.6 Literate programming

CubicWeb provides some literate programming capabilities. The cubicweb-ctl tool shell command accepts different
file formats. If your file ends with .txt or .rst, the file will be parsed by doctest.testfilewith CubicWeb’s Migration
API enabled in it.

Create a scenario.txt file in the test/ directory and fill with some content. Refer to the doctest.testfile documen-
tation.

Then, you can run it directly by:

5.7. Tests 177

http://docs.python.org/library/doctest.html
http://docs.python.org/library/doctest.html

Cubicweb Documentation, Release 3.38.10

$ cubicweb-ctl shell <cube_instance> test/scenario.txt

When your scenario file is ready, put it in a new test case to be able to run it automatically.

from os.path import dirname, join
from logilab.common.testlib import unittest_main
from cubicweb.devtools.testlib import CubicWebTC

class AcceptanceTC(CubicWebTC):

def test_scenario(self):
self.assertDocTestFile(join(dirname(__file__), 'scenario.txt'))

if __name__ == '__main__':
unittest_main()

Skipping a scenario

If you want to set up initial conditions that you can’t put in your unit test case, you have to use a KeyboardInterrupt
exception only because of the way doctest module will catch all the exceptions internally.

>>> if condition_not_met:
... raise KeyboardInterrupt('please, check your fixture.')

Passing paramaters

Using extra arguments to parametrize your scenario is possible by prepending them by double dashes.

Please refer to the cubicweb-ctl shell –help usage.

Important: Your scenario file must be utf-8 encoded.

5.7.7 Test APIS

Using Pytest

The pytest utility (shipping with logilab-common, which is a mandatory dependency of CubicWeb) extends the Python
unittest functionality and is the preferred way to run the CubicWeb test suites. Bare unittests also work the usual way.

To use it, you may:

• just launch pytest in your cube to execute all tests (it will discover them automatically)

• launch pytest unittest_foo.py to execute one test file

• launch pytest unittest_foo.py bar to execute all test methods and all test cases whose name contains bar

Additionally, the -x option tells pytest to exit at the first error or failure. The -i option tells pytest to drop into pdb
whenever an exception occurs in a test.

When the -x option has been used and the run stopped on a test, it is possible, after having fixed the test, to relaunch
pytest with the -R option to tell it to start testing again from where it previously failed.

178 Chapter 5. Backend Development

https://www.logilab.org/project/logilab-common

Cubicweb Documentation, Release 3.38.10

Using the TestCase base class

The base class of CubicWebTC is logilab.common.testlib.TestCase, which provides a lot of convenient assertion meth-
ods.

class logilab.common.testlib.TestCase(methodName: str = 'runTest')
A unittest.TestCase extension with some additional methods.

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the
instance does not have a method with the specified name.

classmethod datapath(*fname: str)→ str
joins the object’s datadir and fname

innerSkip(msg: Optional[str] = None)→ mypy_extensions.NoReturn
mark a generative test as skipped for the <msg> reason

maxDiff = None

optval(option, default=None)
return the option value or default if the option is not define

set_description(descr)
sets the current test’s description. This can be useful for generative tests because it allows to specify a
description per yield

shortDescription()→ Optional[Any]
override default unittest shortDescription to handle correctly generative tests

CubicWebTC API

class cubicweb.devtools.testlib.CubicWebTC(*args, **kwargs)
abstract class for test using an apptest environment

attributes:

• vreg, the vregistry

• schema, self.vreg.schema

• config, cubicweb configuration

• cnx, repoapi connection to the repository using an admin user

• session, server side session associated to cnx

• app, the cubicweb publisher (for web testing)

• repo, the repository object

• admlogin, login of the admin user

• admpassword, password of the admin user

• shell, create and use shell environment

• anonymous_allowed: flag telling if anonymous browsing should be allowed

Create an instance of the class that will use the named test method when executed. Raises a ValueError if the
instance does not have a method with the specified name.

5.7. Tests 179

Cubicweb Documentation, Release 3.38.10

admin_request_from_url(url)
parses url and builds the corresponding CW-web request

req.form will be setup using the url’s query string

property app

return a cubicweb publisher

assertSentEmail(subject, recipients=None, nb_msgs=None)
test recipients in system mailbox for given email subject

Parameters
• subject – email subject to find in mailbox

• recipients – list of email recipients

• nb_msgs – expected number of entries

Returns list of matched emails

configcls

alias of cubicweb.devtools.ApptestConfiguration

create_user(req, login=None, groups=('users',), password=None, email=None, commit=True, **kwargs)
create and return a new user entity

ctrl_publish(req, ctrl='edit', rset=None)
call the publish method of the edit controller

expect_redirect(callback, req)
call the given callback with req as argument, expecting to get a Redirect exception

expect_redirect_handle_request(req, path='edit')
call the publish method of the application publisher, expecting to get a Redirect exception

static fake_form(formid, field_dict=None, entity_field_dicts=())
Build _cw.form dictionnary to fake posting of some standard cubicweb form

• formid, the form id, usually form’s __regid__

• field_dict, dictionary of name:value for fields that are not tied to an entity

• entity_field_dicts, list of (entity, dictionary) where dictionary contains name:value for fields that are
not tied to the given entity

http_publish(url, data=None)
like url_publish, except this returns a http response, even in case of errors. You may give form parameters
using the data argument.

classmethod init_config(config)
configuration initialization hooks.

You may only want to override here the configuraton logic.

Otherwise, consider to use a different ApptestConfiguration defined in the configcls class attribute.

This method will be called by the database handler once the config has been properly bootstrapped.

list_actions_for(rset)
returns the list of actions that can be applied on rset

180 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

list_boxes_for(rset)
returns the list of boxes that can be applied on rset

list_startup_views()

returns the list of startup views

list_views_for(rset)
returns the list of views that can be applied on rset

new_access(login)
provide a new RepoAccess object for a given user

The access is automatically closed at the end of the test.

classmethod pre_setup_database(cnx, config)
add your pre database setup code by overriding this method

Do not forget to set the cls.test_db_id value to enable caching of the result.

remote_calling(fname, *args, **kwargs)
remote json call simulation

requestcls

alias of cubicweb.devtools.fake.FakeRequest

property schema

return the application schema

setUp()

Hook method for setting up the test fixture before exercising it.

classmethod setUpClass()

Hook method for setting up class fixture before running tests in the class.

setup_database()

add your database setup code by overriding this method

tearDown()

Hook method for deconstructing the test fixture after testing it.

temporary_permissions(*perm_overrides, **perm_kwoverrides)
Set custom schema permissions within context.

There are two ways to call this method, which may be used together :

• using positional argument(s):

rdef = self.schema['CWUser'].rdef('login')
with self.temporary_permissions((rdef, {'read': ()})):

...

• using named argument(s):

with self.temporary_permissions(CWUser={'read': ()}):
...

Usually the former will be preferred to override permissions on a relation definition, while the latter is well
suited for entity types.

The allowed keys in the permission dictionary depend on the schema type (entity type / relation definition).
Resulting permissions will be similar to orig_permissions.update(partial_perms).

5.7. Tests 181

Cubicweb Documentation, Release 3.38.10

url_publish(url, data=None)
takes url, uses application’s app_resolver to find the appropriate controller and result set, then publishes
the result.

To simulate post of www-form-encoded data, give a data dictionary containing desired key/value associ-
ations.

This should pretty much correspond to what occurs in a real CW server except the apache-rewriter com-
ponent is not called.

view(vid, rset=None, req=None, template='main-template', **kwargs)
This method tests the view vid on rset using template

If no error occurred while rendering the view, the HTML is analyzed and parsed.

Returns an instance of cubicweb.devtools.htmlparser.PageInfo encapsulation the generated
HTML

5.7.8 What you need to know about request and session

First, remember to think that some code run on a client side, some other on the repository side. More precisely:

• client side: web interface, raw repoapi connection (cubicweb-ctl shell for instance);

• repository side: RQL query execution, that may trigger hooks and operation.

The client interacts with the repository through a repoapi connection.

Note: These distinctions are going to disappear in cubicweb 3.21 (if not before).

A repoapi connection is tied to a session in the repository. The connection and request objects are inaccessible from
repository code / the session object is inaccessible from client code (theoretically at least).

The web interface provides a request class. That request object provides access to all cubicweb resources, eg:

182 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• the registry (which itself provides access to the schema and the configuration);

• an underlying repoapi connection (when using req.execute, you actually call the repoapi);

• other specific resources depending on the client type (url generation according to base url, form parameters, etc.).

A session provides an api similar to a request regarding RQL execution and access to global resources (registry and
all), but also has the following responsibilities:

• handle transaction data, that will live during the time of a single transaction. This includes the database connec-
tions that will be used to execute RQL queries.

• handle persistent data that may be used across different (web) requests

• security and hooks control (not possible through a request)

The _cw attribute

The _cw attribute available on every application object provides access to all cubicweb resources, i.e.:

• For code running on the client side (eg web interface view), _cw is a request instance.

• For code running on the repository side (hooks and operation), _cw is a Connection or Session instance.

Beware some views may be called with a session (e.g. notifications) or with a request.

Request, session and transaction

In the web interface, an HTTP request is handled by a single request, which will be thrown away once the response is
sent.

The web publisher handles the transaction:

• commit / rollback is done automatically

• you should not commit / rollback explicitly, except if you really need it

Let’s detail the process:

1. an incoming RQL query comes from a client to the web stack

2. the web stack opens an authenticated database connection for the request, which is associated to a user session

3. the query is executed (through the repository connection)

4. this query may trigger hooks. Hooks and operations may execute some rql queries through cnx.execute.

5. the repository gets the result of the query in 1. If it was a RQL read query, the database connection is released.
If it was a write query, the connection is then tied to the session until the transaction is commited or rolled back.

6. results are sent back to the client

This implies several things:

• when using a request, or code executed in hooks, this database connection handling is totally transparent

• however, take care when writing tests: you are usually faking / testing both the server and the client side, so
you have to decide when to use RepoAccess.client_cnx or RepoAccess.repo_cnx. Ask yourself “where will the
code I want to test be running, client or repository side?”. The response is usually: use a repo (since the “client
connection” concept is going away in a couple of releases).

5.7. Tests 183

Cubicweb Documentation, Release 3.38.10

5.8 Migration

One of the main design goals of CubicWeb was to support iterative and agile development. For this purpose, multiple
actions are provided to facilitate the improvement of an instance, and in particular to handle the changes to be applied
to the data model, without loosing existing data.

The current version of a cube (and of cubicweb itself) is provided in the file __pkginfo__.py as a tuple of 3 integers.

5.8.1 Migration scripts management

Migration scripts has to be located in the directory migration of your cube and named accordingly:

<version n° X.Y.Z>[_<description>]_<mode>.py

in which :

• X.Y.Z is the model version number to which the script enables to migrate.

• mode (between the last “_” and the extension “.py”) is used for distributed installation. It indicates to which part
of the application (RQL server, web server) the script applies. Its value could be :

– common, applies to the RQL server as well as the web server and updates files on the hard drive (configu-
ration files migration for example).

– web, applies only to the web server and updates files on the hard drive.

– repository, applies only to the RQL server and updates files on the hard drive.

– Any, applies only to the RQL server and updates data in the database (schema and data migration for
example).

Again in the directory migration, the file depends.map allows to indicate that for the migration to a particular model
version, you always have to first migrate to a particular CubicWeb version. This file can contain comments (lines starting
with #) and a dependency is listed as follows:

<model version n° X.Y.Z> : <cubicweb version n° X.Y.Z>

For example:

0.12.0: 2.26.0
0.13.0: 2.27.0
0.14 works with 2.27 <= cubicweb <= 2.28 at least
0.15.0: 2.28.0

5.8.2 Base context

The following identifiers are pre-defined in migration scripts:

• config, instance configuration

• interactive_mode, boolean indicating that the script is executed in an interactive mode or not

• versions_map, dictionary of migrated versions (key are cubes names, including ‘cubicweb’, values are (from
version, to version)

• confirm(question), function asking the user and returning true if the user answers yes, false otherwise (always
returns true in non-interactive mode)

184 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• _() is equivalent to unicode allowing to flag the strings to internationalize in the migration scripts.

In the repository scripts, the following identifiers are also defined:

• commit(ask_confirm=True), request confirming and executing a “commit”

• schema, instance schema (readen from the database)

• fsschema, installed schema on the file system (e.g. schema of the updated model and cubicweb)

• repo, repository object

• session, repository session object

5.8.3 New cube dependencies

If your code depends on some new cubes, you have to add them in a migration script by using:

• add_cube(cube, update_database=True), add a cube.

• add_cubes(cubes, update_database=True), add a list of cubes.

The update_database parameter is telling if the database schema should be updated or if only the relevant persistent
property should be inserted (for the case where a new cube has been extracted from an existing one, so the new cube
schema is actually already in there).

If some of the added cubes are already used by an instance, they’ll simply be silently skipped.

To remove a cube use drop_cube(cube, removedeps=False).

5.8.4 Schema migration

The following functions for schema migration are available in repository scripts:

• add_attribute(etype, attrname, attrtype=None, commit=True), adds a new attribute to an existing entity type. If
the attribute type is not specified, then it is extracted from the updated schema.

• drop_attribute(etype, attrname, commit=True), removes an attribute from an existing entity type.

• rename_attribute(etype, oldname, newname, commit=True), renames an attribute

• add_entity_type(etype, auto=True, commit=True), adds a new entity type. If auto is True, all the relations using
this entity type and having a known entity type on the other hand will automatically be added.

• drop_entity_type(etype, commit=True), removes an entity type and all the relations using it.

• rename_entity_type(oldname, newname, commit=True), renames an entity type

• add_relation_type(rtype, addrdef=True, commit=True), adds a new relation type. If addrdef is True, all the
relations definitions of this type will be added.

• drop_relation_type(rtype, commit=True), removes a relation type and all the definitions of this type.

• rename_relation_type(oldname, newname, commit=True), renames a relation type.

• add_relation_definition(subjtype, rtype, objtype, commit=True), adds a new relation definition.

• drop_relation_definition(subjtype, rtype, objtype, commit=True), removes a relation definition.

• sync_schema_props_perms(ertype=None, syncperms=True, syncprops=True, syncrdefs=True, commit=True),
synchronizes properties and/or permissions on: - the whole schema if ertype is None - an entity or relation type
schema if ertype is a string - a relation definition if ertype is a 3-uple (subject, relation, object)

5.8. Migration 185

Cubicweb Documentation, Release 3.38.10

• change_relation_props(subjtype, rtype, objtype, commit=True, **kwargs), changes properties of a relation def-
inition by using the named parameters of the properties to change.

• set_widget(etype, rtype, widget, commit=True), changes the widget used for the relation <rtype> of entity type
<etype>.

• set_size_constraint(etype, rtype, size, commit=True), changes the size constraints for the relation <rtype> of
entity type <etype>.

• update_bfss_path(old_path, new_path, commit=True), change the path from old_path to new_path in Bytes File-
System Storage (bfss).

5.8.5 Data migration

The following functions for data migration are available in repository scripts:

• rql(rql, kwargs=None, cachekey=None, ask_confirm=True), executes an arbitrary RQL query, either to interro-
gate or update. A result set object is returned.

• add_entity(etype, *args, **kwargs), adds a new entity of the given type. The attribute and relation values are
specified as named positional arguments.

5.8.6 Workflow creation

The following functions for workflow creation are available in repository scripts:

• add_workflow(label, workflowof, initial=False, commit=False, **kwargs), adds a new workflow for a given
type(s),

• get_workflow_for(etype), return the workflow for the given entity type,

• transition_by_name(self, trname), method of cubicweb.entities.wfobjs.Workflow instance that returns the tran-
sition named trname,

• set_permissions(self, requiredgroups=(), conditions=(), reset=True) method of cu-
bicweb.entities.wfobjs.Transition instance that sets or adds (if reset is False) groups and conditions for
this transition.

You can find more details about workflows in the chapter Defining a Workflow .

5.8.7 Configuration migration

The following functions for configuration migration are available in all scripts:

• option_renamed(oldname, newname), indicates that an option has been renamed

• option_group_change(option, oldgroup, newgroup), indicates that an option does not belong anymore to the same
group.

• option_added(option), indicates that an option has been added.

• option_removed(option), indicates that an option has been deleted.

The config variable is an object which can be used to access the configuration values, for reading and updating, with a
dictionary-like syntax.

Example 1: migration script changing the variable ‘sender-addr’ in all-in-one.conf. The script also checks that in that
the instance is configured with a known value for that variable, and only updates the value in that case.

186 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

wrong_addr = 'cubicweb@loiglab.fr' # known wrong address
fixed_addr = 'cubicweb@logilab.fr'
configured_addr = config.get('sender-addr')
check that the address has not been hand fixed by a sysadmin
if configured_addr == wrong_addr:

config['sender-addr'] = fixed-addr
config.save()

Example 2: checking the value of the database backend driver, which can be useful in case you need to issue backend-
dependent raw SQL queries in a migration script.

dbdriver = config.sources()['system']['db-driver']
if dbdriver == "sqlserver2005":

this is now correctly handled by CW :-)
sql('ALTER TABLE cw_Xxxx ALTER COLUMN cw_name varchar(64) NOT NULL;')
commit()

else: # postgresql
sync_schema_props_perms(ertype=('Xxxx', 'name', 'String'),
syncperms=False)

5.8.8 Others migration functions

Those functions are only used for low level operations that could not be accomplished otherwise or to repair damaged
databases during interactive session. They are available in repository scripts:

• sql(sql, args=None, ask_confirm=True), executes an arbitrary SQL query on the system source

• add_entity_type_table(etype, commit=True)

• add_relation_type_table(rtype, commit=True)

• uninline_relation(rtype, commit=True)

5.9 Profiling and performance

If you feel that one of your pages takes more time than it should to be generated, chances are that you’re making too
many RQL queries. Obviously, there are other reasons but experience tends to show this is the first thing to track
down. Luckily, CubicWeb provides a configuration option to log RQL queries. In your all-in-one.conf file, set the
query-log-file option:

web application query log file
query-log-file=/home/user/myapp-rql.log

Then restart your application, reload your page and stop your application. The file myapp-rql.log now contains the
list of RQL queries that were executed during your test. It’s a simple text file containing lines such as:

Any A WHERE X eid %(x)s, X lastname A {'x': 448} -- (0.002 sec, 0.010 CPU sec)
Any A WHERE X eid %(x)s, X firstname A {'x': 447} -- (0.002 sec, 0.000 CPU sec)

The structure of each line is:

<RQL QUERY> <QUERY ARGS IF ANY> -- <TIME SPENT>

5.9. Profiling and performance 187

Cubicweb Documentation, Release 3.38.10

CubicWeb also provides the exlog command to examine and summarize data found in such a file:

$ cubicweb-ctl exlog /home/user/myapp-rql.log
0.07 50 Any A WHERE X eid %(x)s, X firstname A {}
0.05 50 Any A WHERE X eid %(x)s, X lastname A {}
0.01 1 Any X,AA ORDERBY AA DESC WHERE E eid %(x)s, E employees X, X modification_date AA
→˓{}
0.01 1 Any X WHERE X eid %(x)s, X owned_by U, U eid %(u)s {, }
0.01 1 Any B,T,P ORDERBY lower(T) WHERE B is Bookmark,B title T, B path P, B bookmarked_
→˓by U, U eid %(x)s {}
0.01 1 Any A,B,C,D WHERE A eid %(x)s,A name B,A creation_date C,A modification_date D {}

This command sorts and uniquifies queries so that it’s easy to see where is the hot spot that needs optimization.

Do not neglect to set the fetch_attrs attribute you can define in your entity classes because it can greatly reduce the
number of queries executed (see Loaded attributes and default sorting management).

You should also know about the profile option in the all-in-on.conf. If set, this option will make your application
run in an hotshot session and store the results in the specified file.

Last but no least, if you’re using the PostgreSQL database backend, VACUUMing your database can significantly
improve the performance of the queries (by updating the statistics used by the query optimizer). Nowadays, this is done
automatically from time to time, but if you’ve just imported a large amount of data in your db, you will want to vacuum
it (with the analyse option on). Read the documentation of your database for more information.

5.10 Full Text Indexing in CubicWeb

When an attribute is tagged as fulltext-indexable in the datamodel, CubicWeb will automatically trigger hooks to update
the internal fulltext index (i.e the appears SQL table) each time this attribute is modified.

CubicWeb also provides a db-rebuild-fti command to rebuild the whole fulltext on demand:

cubicweb@esope~$ cubicweb db-rebuild-fti my_tracker_instance

You can also rebuild the fulltext index for a given set of entity types:

cubicweb@esope~$ cubicweb db-rebuild-fti my_tracker_instance Ticket Version

In the above example, only fulltext index of entity types Ticket and Version will be rebuilt.

5.10.1 Standard FTI process

Considering an entity type ET, the default fti process is to :

1. fetch all entities of type ET

2. for each entity, adapt it to IFTIndexable (see IFTIndexableAdapter)

3. call get_words() on the adapter which is supposed to return a dictionary weight -> list of words as expected by
index_object(). The tokenization of each attribute value is done by tokenize().

See IFTIndexableAdapter for more documentation.

188 Chapter 5. Backend Development

http://docs.python.org/library/hotshot.html#module-hotshot

Cubicweb Documentation, Release 3.38.10

5.10.2 Yams and fulltext_container

It is possible in the datamodel to indicate that fulltext-indexed attributes defined for an entity type will be used to index
not the entity itself but a related entity. This is especially useful for composite entities. Let’s take a look at (a simplified
version of) the base schema defined in CubicWeb (see cubicweb.schemas.base):

class CWUser(WorkflowableEntityType):
login = String(required=True, unique=True, maxsize=64)
upassword = Password(required=True)

class EmailAddress(EntityType):
address = String(required=True, fulltextindexed=True,

indexed=True, unique=True, maxsize=128)

class use_email_relation(RelationDefinition):
name = 'use_email'
subject = 'CWUser'
object = 'EmailAddress'
cardinality = '*?'
composite = 'subject'

The schema above states that there is a relation between CWUser and EmailAddress and that the address field of
EmailAddress is fulltext indexed. Therefore, in your application, if you use fulltext search to look for an email address,
CubicWeb will return the EmailAddress itself. But the objects we’d like to index are more likely to be the associated
CWUser than the EmailAddress itself.

The simplest way to achieve that is to tag the use_email relation in the datamodel:

class use_email(RelationType):
fulltext_container = 'subject'

5.10.3 Customizing how entities are fetched during db-rebuild-fti

db-rebuild-fti will call the cw_fti_index_rql_limit() class method on your entity type.

classmethod AnyEntity.cw_fti_index_rql_limit(req, limit=1000)
generate rsets of entities to FT-index

By default, each successive result set is limited to 1000 entities

5.10.4 Customizing get_words()

You can also customize the FTI process by providing your own get_words() implementation:

from cubicweb.entities.adapters import IFTIndexableAdapter

class SearchIndexAdapter(IFTIndexableAdapter):
__regid__ = 'IFTIndexable'
__select__ = is_instance('MyEntityClass')

def fti_containers(self, _done=None):
"""this should yield any entity that must be considered to

(continues on next page)

5.10. Full Text Indexing in CubicWeb 189

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

fulltext-index self.entity

CubicWeb's default implementation will look for yams'
``fulltex_container`` property.
"""
yield self.entity
yield self.entity.some_related_entity

def get_words(self):
implement any logic here
see http://www.postgresql.org/docs/9.1/static/textsearch-controls.html
for the actual signification of 'C'
return {'C': ['any', 'word', 'I', 'want']}

5.11 Data Import

CubicWeb is designed to easily manipulate large amounts of data, and provides utilities to make imports simple.

The main entry point is cubicweb.dataimport.importer which defines an ExtEntitiesImporter class respon-
sible for importing data from an external source in the form ExtEntity objects. An ExtEntity is a transitional
representation of an entity to be imported in the CubicWeb instance; building this representation is usually domain-
specific – e.g. dependent of the kind of data source (RDF, CSV, etc.) – and is thus the responsibility of the end-user.

Along with the importer, a store must be selected, which is responsible for insertion of data into the database. There
exists different kind of stores, allowing to insert data within different levels of the CubicWeb API and with different
speed/security tradeoffs. Those keeping all the CubicWeb hooks and security will be slower but the possible errors in
insertion (bad data types, integrity error, . . .) will be handled.

5.11.1 Example

Consider the following schema snippet.

class Person(EntityType):
name = String(required=True)

class knows(RelationDefinition):
subject = 'Person'
object = 'Person'

along with some data in a people.csv file:

uri,name,knows
http://www.example.org/alice,Alice,
http://www.example.org/bob,Bob,http://www.example.org/alice

The following code (using a shell context) defines a function extentities_from_csv to read Person external entities
coming from a CSV file and calls the ExtEntitiesImporter to insert corresponding entities and relations into the
CubicWeb instance.

190 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

from cubicweb.dataimport import ucsvreader, RQLObjectStore
from cubicweb.dataimport.importer import ExtEntity, ExtEntitiesImporter

def extentities_from_csv(fpath):
"""Yield Person ExtEntities read from `fpath` CSV file."""
with open(fpath) as f:

for uri, name, knows in ucsvreader(f, skipfirst=True, skip_empty=False):
yield ExtEntity('Person', uri,

{'name': set([name]), 'knows': set([knows])})

extenties = extentities_from_csv('people.csv')
store = RQLObjectStore(cnx)
importer = ExtEntitiesImporter(schema, store)
importer.import_entities(extenties)
commit()
rset = cnx.execute('String N WHERE X name N, X knows Y, Y name "Alice"')
assert rset[0][0] == u'Bob', rset

5.11.2 Importer API

Data import of external entities.

Main entry points:

class cubicweb.dataimport.importer.ExtEntitiesImporter(schema, store, extid2eid=None,
existing_relations=None,
etypes_order_hint=(), import_log=None,
raise_on_error=False)

This class is responsible for importing externals entities, that is instances of ExtEntity, into CubicWeb entities.

Parameters
• schema – the CubicWeb’s instance schema

• store – a CubicWeb Store

• extid2eid – optional {extid: eid} dictionary giving information on existing entities. It
will be completed during import. You may want to use cwuri2eid() to build it.

• existing_relations – optional {rtype: set((subj eid, obj eid))} mapping giving infor-
mation on existing relations of a given type. You may want to use RelationMapping to
build it.

• etypes_order_hint – optional ordered iterable on entity types, giving an hint on the
order in which they should be attempted to be imported

• import_log – optional object implementing the SimpleImportLog interface to record
events occuring during the import

• raise_on_error – optional boolean flag - default to false, indicating whether errors
should be raised or logged. You usually want them to be raised during test but to be
logged in production.

Instances of this class are meant to import external entities through import_entities()which handles a stream
of ExtEntity. One may then plug arbitrary filters into the external entities stream.

5.11. Data Import 191

Cubicweb Documentation, Release 3.38.10

import_entities(ext_entities)
Import given external entities (ExtEntity) stream (usually a generator).

class cubicweb.dataimport.importer.ExtEntity(etype, extid, values=None)
Transitional representation of an entity for use in data importer.

An external entity has the following properties:

• extid (external id), an identifier for the ext entity,

• etype (entity type), a string which must be the name of one entity type in the schema (eg. 'Person',
'Animal', . . .),

• values, a dictionary whose keys are attribute or relation names from the schema (eg. 'first_name',
'friend'), and whose values are sets. For attributes of type Bytes, byte strings should be inserted in
values.

For instance:

ext_entity.extid = 'http://example.org/person/debby'
ext_entity.etype = 'Person'
ext_entity.values = {'first_name': set([u"Deborah", u"Debby"]),

'friend': set(['http://example.org/person/john'])}

Utilities:

cubicweb.dataimport.importer.cwuri2eid(cnx, etypes, source_eid=None)
Return a dictionary mapping cwuri to eid for entities of the given entity types and / or source.

class cubicweb.dataimport.importer.RelationMapping(cnx, source=None)
Read-only mapping from relation type to set of related (subject, object) eids.

If source is specified, only returns relations implying entities from this source.

cubicweb.dataimport.importer.use_extid_as_cwuri(extid2eid)
Return a generator of ExtEntity objects that will set cwuri using entity’s extid if the entity does not exist yet
and has no cwuri defined.

extid2eid is an extid to eid dictionary coming from an ExtEntitiesImporter instance.

Example usage:

importer = ExtEntitiesImporter(cnx, store, import_log)
set_cwuri = use_extid_as_cwuri(importer.extid2eid)
importer.import_entities(set_cwuri(extentities))

Stores

Stores are responsible to insert properly formatted entities and relations into the database. They have the following
API:

>>> user_eid = store.prepare_insert_entity('CWUser', login=u'johndoe')
>>> group_eid = store.prepare_insert_entity('CWUser', name=u'unknown')
>>> store.prepare_insert_relation(user_eid, 'in_group', group_eid)
>>> store.flush()
>>> store.commit()
>>> store.finish()

192 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

Some store requires a flush to copy data in the database, so if you want to have store independant code you should
explicitly call it. (There may be multiple flushes during the process, or only one at the end if there is no memory issue).
This is different from the commit which validates the database transaction. At last, the finish() method should be called
in case the store requires additional work once everything is done.

• prepare_insert_entity(<entity type>, **kwargs) -> eid: given an entity type, attributes and in-
lined relations, return the eid of the entity to be inserted, with no guarantee that anything has been inserted in
database,

• prepare_update_entity(<entity type>, eid, **kwargs) -> None: given an entity type and eid,
promise for update given attributes and inlined relations with no guarantee that anything has been inserted in
database,

• prepare_insert_relation(eid_from, rtype, eid_to) -> None: indicate that a relation rtype should
be added between entities with eids eid_from and eid_to. Similar to prepare_insert_entity(), there is
no guarantee that the relation will be inserted in database,

• flush() -> None: flush any temporary data to database. May be called several times during an import,

• commit() -> None: commit the database transaction,

• finish() -> None: additional stuff to do after import is terminated.

class cubicweb.dataimport.stores.NullStore

Store that mainly describe the store API.

It may be handy to test input data files or to measure time taken by steps above the store (e.g. data parsing,
importer, etc.): simply give a NullStore instance instead of the actual store.

Stores can also be used as context manager. If no exception is raised during the import, a final flush and the finish
method are called. On the contrary, is something went wrong, we roll everything back.

class cubicweb.dataimport.stores.RQLObjectStore(cnx)
Store that works by making RQL queries, hence with all the cubicweb’s machinery activated.

class cubicweb.dataimport.stores.NoHookRQLObjectStore(cnx, metagen=None)
Store that works by accessing low-level CubicWeb’s source API, with all hooks deactivated. It may be given a
metadata generator object to handle metadata which are usually handled by hooks.

Arguments: - cnx, a connection to the repository - metagen, optional MetadataGenerator instance

class cubicweb.dataimport.stores.MetadataGenerator(cnx, baseurl=None, source=None,
meta_skipped=())

Class responsible for generating standard metadata for imported entities. You may want to derive it to add
application specific’s metadata. This class (or a subclass) may either be given to a nohook or massive store.

Parameters: * cnx: connection to the repository * baseurl: optional base URL to be used for cwuri generation -
default to config[‘base-url’] * source: optional source to be used as cw_source for imported entities

5.11.3 MassiveObjectStore

This store relies on COPY FROM sql commands to directly push data using SQL commands rather than using the
whole CubicWeb API. For now, it only works with PostgreSQL as it requires the COPY FROM command. Anything
related to CubicWeb (Hooks, for instance), are bypassed. It inserts entities directly by using one PostgreSQL COPY
FROM query for a set of similarly structured entities.

This store is the fastest, if the table is small compared to the volume of data to insert. Indeed, it removes all indexes and
constraints on the table before importing, and reapply them at the end. This means that if the table is small compared
to the amount of data you want to insert, this store is better than the others.

5.11. Data Import 193

Cubicweb Documentation, Release 3.38.10

NOTE: Because inlined1 relations are stored in the entity’s table, they must be set as any other attributes of the entity.
For instance:

store.prepare_insert_entity("MyEType", name="toto", favorite_email=email_address.eid)

class cubicweb.dataimport.massive_store.MassiveObjectStore(cnx, slave_mode=False,
eids_seq_range=10000,
metagen=None, drop=True)

Store for massive import of data, with delayed insertion of meta data.

WARNINGS:

• This store may only be used with PostgreSQL for now, as it relies on the COPY FROM method, and on
specific PostgreSQL tables to get all the indexes.

• This store can only insert relations that are not inlined (i.e., which do not have inlined=True in their defi-
nition in the schema), unless they are specified as entity attributes.

It should be used as follows:

store = MassiveObjectStore(cnx) eid_p = store.prepare_insert_entity(‘Person’,

cwuri=u’http://dbpedia.org/toto’, name=u’Toto’)

eid_loc = store.prepare_insert_entity(‘Location’, cwuri=u’http://geonames.org/11111’,
name=u’Somewhere’)

store.prepare_insert_relation(eid_p, ‘lives_in’, eid_loc) store.flush() . . . store.commit()
store.finish()

Full-text indexation is not handled, you’ll have to reindex the proper entity types by yourself if desired.

Create a MassiveObject store, with the following arguments:

• cnx, a connection to the repository

• metagen, optional MetadataGenerator instance

• eids_seq_range: size of eid range reserved by the store for each batch

5.12 Debug Channels

In CubicWeb 3.27 a new debug channels mechanism has been added to help build the pyramid debug toolbar custom
panels. It isn’t meant to do regular CW development but can be used for tools building (like the custom panel) if desired.

The API is really simple to use and is used like this:

from cubicweb.debug import subscribe_to_debug_channel, unsubscribe_to_debug_channel

the callback will only receive one argument which is a python dict
containing debug information
def example_debug_callback(message):

print(message)

(continues on next page)

1 An inlined relation is a relation defined in the schema with the keyword argument inlined=True. Such a relation is inserted in the database
as an attribute of the entity whose subject it is.

194 Chapter 5. Backend Development

http://dbpedia.org/toto
http://geonames.org/11111

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

"channel" must be one of: controller, rql, sql, vreg, registry_decisions
subscribe_to_debug_channel(channel, example_debug_callback)

when it is not needed anymore (and to avoid dandling references)
unsubscribe_to_debug_channel(channel, example_debug_callback)

5.12.1 Channels documentation

The list of sent messages by channels:

Controller

This debug message will only be sent in a pyramid context. Emitted for each request.

{
"kind": ctrlid,
"request": request_object,
"path": request_object.path,
"controller": controller,
"config": repo_configuration,

}

RQL

Emitted for each query.

{
"rql": rql_as_a_string,
arguments used to format the query
"args": args,
used to link rql and sql queries
"rql_query_tracing_token": rql_query_tracing_token,
"callstack": python_call_stack,
"time": time_taken_in_ms_by_the_query,
"result": the_result_as_python_data,
"description": description_object,

}

SQL

Emitted for each query. Be advised that a SQL query generated by a RQL query will be emitted before the corresponding
RQL query.

{
"sql": sql_as_a_string,
arguments used to format the query
"args": args,

(continues on next page)

5.12. Debug Channels 195

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

"rollback": True|False,
"callstack": "".join(traceback.format_stack()[:-1]),
used to link rql and sql queries
"rql_query_tracing_token": rql_query_tracing_token,
"time": time_taken_in_ms_by_the_query,

}

vreg

This debug message will only be sent in a pyramid context. Emitted for each request.

{
"vreg": vreg,

}

registry_decisions

This is emitted each time a decision is taken in a registry.

{
"all_objects": [],
"end_score": int,
"winners": [],
"winner": obj or None,
"registry": obj,
"args": args,
"kwargs": kwargs,

}

5.13 API Reference

cubicweb.debug.subscribe_to_debug_channel(channel, subscriber)

cubicweb.debug.unsubscribe_to_debug_channel(channel, subscriber)
Unsubscribe a callable from a channel. It will raise Exception if the channel doesn’t exist nor

5.14 Source connections pooler

CubicWeb comes with a connections pool for it’s datasource (typically sqlite or postgresql), it is a dynamic pool meaning
that:

• it will keep a minimum number of connections open (by default 0)

• when load increase it will open new connections

• if a max number of connections is set it will stop once it’s reached

• if the max number of connections is zero, it is considered to be unlimited

196 Chapter 5. Backend Development

Cubicweb Documentation, Release 3.38.10

• after some idle time (connections-pool-idle-timeout), if no new connections needed to be open on a new request,
the pool will close one unused connection if the queue isn’t empty

• if no connection are available after some time and the max number of connections has been reached, the connec-
tions pool will raise. To fix this, you can either increase the value of connections-pool-max-size or set it to 0 for
an unlimited number of connections. A minimum of 5 connections per process is recommended if you want to
set a max number.

Note that the connections pool won’t be activated in some “quick start” situations like database dump/restore.

5.14.1 Configuration

The values used by the connections pool are fully configurable in your instance configuration file (usually the all-in-
one.conf), here is the list:

• connections-pooler-enabled: enable the connections pooler, default: true. You want to disable the pool if you
are using another external pooling system like pgbouncer.

• connections-pool-max-size: max size of the connections pool. 0 means unlimited. Each source supporting
multiple connections will have this maximum number of opened connections, default: 0

• connections-pool-min-size: min size of the connections pool. Each source supporting multiple connections will
have this minimum number of opened connections, default: 0

• connections-pool-idle-timeout: the delay, in seconds, after the last opened connection before which the pool
will start closing unused connections. A connection is only closed on a request that didn’t need to create a new
connection, default: 600

5.14. Source connections pooler 197

Cubicweb Documentation, Release 3.38.10

198 Chapter 5. Backend Development

CHAPTER

SIX

WEB FRONTEND DEVELOPMENT

In this chapter, we will describe the core APIs for web development in the CubicWeb framework.

6.1 Publisher

What happens when an HTTP request is issued ?

The story begins with the CubicWebPublisher.main_publishmethod. We do not get upper in the bootstrap process
because it is dependant on the used HTTP library.

What main_publish does:

• get a controller id and a result set from the path (this is actually delegated to the urlpublisher component)

• the controller is then selected (if not, this is considered an authorization failure and signaled as such) and called

• then either a proper result is returned, in which case the request/connection object issues a commit and returns
the result

• or error handling must happen:

– ValidationErrors pop up there and may lead to a redirect to a previously arranged url or standard error
handling applies

– an HTTP 500 error (Internal Server Error) is issued

Now, let’s turn to the controller. There are many of them in cubicweb.web.views.basecontrollers. We can just
follow the default view controller that is selected on a view path. See the Controllers chapter for more information on
controllers.

The View controller’s entry point is the publish method. It does the following:

• compute the main view to be applied, using either the given result set or building one from a user provided rql
string (rql and vid can be forced from the url GET parameters), that is:

– compute the vid using the result set and the schema (see cubicweb.web.views.vid_from_rset)

– handle all error cases that could happen in this phase

• do some cache management chores

• select a main template (typically TheMainTemplate, see chapter Templates)

• call it with the result set and the computed view.

What happens next actually depends on the template and the view, but in general this is the rendering phase.

199

Cubicweb Documentation, Release 3.38.10

6.1.1 CubicWebPublisher API

class cubicweb.web.application.CubicWebPublisher(repo, config, session_handler_fact=<class 'cu-
bicweb_web.application.CookieSessionHandler'>)

the publisher is a singleton hold by the web frontend, and is responsible to publish HTTP request.

The http server will call its main entry point application.handle_request.

main_handle_request(req)
Process an HTTP request req

Parameters req (web.Request) – the request object

It returns the content of the http response. HTTP header and status are set on the Request object.

You have to provide both a repository and web-server config at initialization. In all in one instance both config
will be the same.

core_handle(req)
method called by the main publisher to process <req> relative path

should return a string containing the resulting page or raise a NotFound exception

Parameters req (web.Request) – the request object

Return type str

Returns the result of the pusblished url

critical(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

debug(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

error(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

exception(msg, *args, exc_info=True, **kwargs)
Convenience method for logging an ERROR with exception information.

get_session(req)
Return a session object corresponding to credentials held by the req

May raise AuthenticationError.

info(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

200 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

log_handle_request(req)
wrapper around _publish to log all queries executed for a given accessed path

main_handle_request(req)
Process an HTTP request req

Parameters req (web.Request) – the request object

It returns the content of the http response. HTTP header and status are set on the Request object.

redirect_handler(req, ex)
handle redirect - comply to ex status - set header field - return empty content

warning(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

6.2 Controllers

6.2.1 Overview

Controllers are responsible for taking action upon user requests (loosely following the terminology of the MVC meta
pattern).

The following controllers are provided out-of-the box in CubicWeb. We list them by category. They are all defined in
(cubicweb.web.views.basecontrollers).

Browsing:

• the View controller is associated with most browsing actions within a CubicWeb application: it always instanti-
ates a TheMainTemplate and lets the ResultSet/Views dispatch system build up the whole content; it handles
ObjectNotFound and NoSelectableObject errors that may bubble up to its entry point, in an end-user-
friendly way (but other programming errors will slip through)

• the JSonpController is a wrapper around the ViewController that provides jsonp services. Padding can be
specified with the callback request parameter. Only jsonexport / ejsonexport views can be used. If another
vid is specified, it will be ignored and replaced by jsonexport. Request is anonymized to avoid returning sensitive
data and reduce the risks of CSRF attacks;

• the Login/Logout controllers make effective user login or logout requests

Edition:

• the Edit controller (see The edit controller) handles CRUD operations in response to a form being submitted; it
works in close association with the Forms, to which it delegates some of the work

• the Form validator controller provides form validation from Ajax context, using the Edit controller, to
implement the classic form handling loop (user edits, hits submit/apply, validation occurs server-side by way of
the Form validator controller, and the UI is decorated with failure information, either global or per-field , until it
is valid)

Other:

• the SendMail controller (web/views/basecontrollers.py) is reponsible for outgoing email notifications

• the MailBugReport controller (web/views/basecontrollers.py) allows to quickly have a reportbug feature in one’s
application

6.2. Controllers 201

http://en.wikipedia.org/wiki/JSONP

Cubicweb Documentation, Release 3.38.10

• the cubicweb.web.views.ajaxcontroller.AjaxController (cubicweb.web.views.
ajaxcontroller) provides services for Ajax calls, typically using JSON as a serialization format for
input, and sometimes using either JSON or XML for output. See Ajax chapter for more information.

6.2.2 Registration

All controllers (should) live in the ‘controllers’ namespace within the global registry.

6.2.3 Concrete controllers

Most API details should be resolved by source code inspection, as the various controllers have differing goals. See for
instance the The edit controller chapter.

cubicweb.web.controller contains the top-level abstract Controller class and its unimplemented entry point pub-
lish(rset=None) method.

A handful of helpers are also provided there:

• process_rql builds a result set from an rql query typically issued from the browser (and available through
_cw.form[‘rql’])

• validate_cache will force cache validation handling with respect to the HTTP Cache directives (that were typically
originally issued from a previous server -> client response); concrete Controller implementations dealing with
HTTP (thus, for instance, not the SendMail controller) may very well call this in their publication process.

6.3 The Request class (cubicweb.web.request)

6.3.1 Overview

A request instance is created when an HTTP request is sent to the web server. It contains informations such as form
parameters, authenticated user, etc. It is a very prevalent object and is used throughout all of the framework and
applications, as you’ll access to almost every resources through it.

A request represents a user query, either through HTTP or not (we also talk about RQL queries on the server
side for example).
Here is a non-exhaustive list of attributes and methods available on request objects (grouped by category):

• Browser control:

– ie_browser: tells if the browser belong to the Internet Explorer family

• User and identification:

– user, instance of cubicweb.entities.authobjs.CWUser corresponding to the authenticated user

• Session data handling

– session.data is the dictionary of the session data; it can be manipulated like an ordinary Python dictionary

• Edition (utilities for edition control):

– cancel_edition: resets error url and cleans up pending operations

– create_entity: utility to create an entity (from an etype, attributes and relation values)

– datadir_url: returns the url to the merged external resources (CubicWeb’s web/data directory plus all data
directories of used cubes)

202 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

– edited_eids: returns the list of eids of entities that are edited under the current http request

– eid_rset(eid): utility which returns a result set from an eid

– entity_from_eid(eid): returns an entity instance from the given eid

– encoding: returns the encoding of the current HTTP request

– ensure_ro_rql(rql): ensure some rql query is a data request

– etype_rset

– form, dictionary containing the values of a web form

– encoding, character encoding to use in the response

• HTTP

– authmode: returns a string describing the authentication mode (http, cookie, . . .)

– lang: returns the user agents/browser’s language as carried by the http request

– demote_to_html(): in the context of an XHTML compliant browser, this will force emission of the response
as an HTML document (using the http content negociation)

• Cookies handling

• get_cookie(), returns a dictionary containing the value of the header HTTP ‘Cookie’

• set_cookie(cookie, key, maxage=300), adds a header HTTP Set-Cookie, with a minimal 5 minutes length of
duration by default (maxage = None returns a session cookie which will expire when the user closes the browser
window)

• remove_cookie(cookie, key), forces a value to expire

• URL handling

– build_url(__vid, *args, **kwargs): return an absolute URL using params dictionary key/values as URL
parameters. Values are automatically URL quoted, and the publishing method to use may be specified or
will be guessed.

– build_url_params(**kwargs): returns a properly prepared (quoted, separators, . . .) string from the given
parameters

– url(), returns the full URL of the HTTP request

– base_url(), returns the root URL of the web application

– relative_path(), returns the relative path of the request

• Web resource (.css, .js files, etc.) handling:

– add_css(cssfiles): adds the given list of css resources to the current html headers

– add_js(jsfiles): adds the given list of javascript resources to the current html headers

– add_onload(jscode): inject the given jscode fragment (a unicode string) into the current html headers,
wrapped inside a document.ready(. . .) or another ajax-friendly one-time trigger event

– add_header(header, values): adds the header/value pair to the current html headers

– status_out: control the HTTP status of the response

• And more. . .

– set_content_type(content_type, filename=None), adds the header HTTP ‘Content-Type’

– get_header(header), returns the value associated to an arbitrary header of the HTTP request

6.3. The Request class (cubicweb.web.request) 203

Cubicweb Documentation, Release 3.38.10

– set_header(header, value), adds an arbitrary header in the response

– execute(*args, **kwargs), executes an RQL query and return the result set

– property_value(key), properties management (CWProperty)

– dictionary data to store data to share informations between components while a request is executed

Please note that this class is abstract and that a concrete implementation will be provided by the frontend web used.
For the views or others that are executed on the server side, most of the interface of Request is defined in the session
associated to the client.

6.3.2 API

The elements we gave in overview for above are built in three layers, from cubicweb.req.RequestSessionBase,
cubicweb.repoapi.Connection and cubicweb.web.ConnectionCubicWebRequestBase.

class cubicweb.req.RequestSessionBase(*args, **kwargs)

class cubicweb.repoapi.Connection(repo, user)
Repository Connection

Holds all connection related data

Database connection resources:

hooks_in_progress, boolean flag telling if the executing query is coming from a repoapi connec-
tion or is a query from within the repository (e.g. started by hooks)

cnxset, the connections set to use to execute queries on sources. If the transaction is read only,
the connection set may be freed between actual queries. This allows multiple connections with a
reasonably low connection set pool size.

mode, string telling the connections set handling mode, may be one of ‘read’ (connections set may
be freed), ‘write’ (some write was done in the connections set, it can’t be freed before end of the
transaction), ‘transaction’ (we want to keep the connections set during all the transaction, with or
without writing)

Shared data:

data is a dictionary bound to the underlying session, who will be present for the life time of the
session. This may be useful for web clients that rely on the server for managing bits of session-
scoped data.

transaction_data is a dictionary cleared at the end of the transaction. Hooks and operations may
put arbitrary data in there.

Internal state:

pending_operations, ordered list of operations to be processed on commit/rollback

commit_state, describing the transaction commit state, may be one of None (not yet committing),
‘precommit’ (calling precommit event on operations), ‘postcommit’ (calling postcommit event on
operations), ‘uncommitable’ (some ValidationError or Unauthorized error has been raised
during the transaction and so it must be rolled back).

Hooks controls:

deny_all_hooks_but(*categories)
Context manager to disable all hooks but those in the given categories.

204 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

allow_all_hooks_but(*categories)
Context manager to enable all hooks but those in the given categories.

Security level Management:

read_security and write_security, boolean flags telling if read/write security is currently ac-
tivated.

add_operation(operation, index=None)
add an operation to be executed at the end of the transaction

add_relation(fromeid, rtype, toeid)
provide direct access to the repository method to add a relation.

This is equivalent to the following rql query:

SET X rtype Y WHERE X eid fromeid, T eid toeid

without read security check but also all the burden of rql execution. You may use this in hooks when you
know both eids of the relation you want to add.

add_relations(relations)
set many relation using a shortcut similar to the one in add_relation

relations is a list of 2-uples, the first element of each 2-uple is the rtype, and the second is a list of (fromeid,
toeid) tuples

added_in_transaction(eid)
return True if the entity of the given eid is being created in the current transaction

allow_all_hooks_but(*categories)
Context manager to enable all hooks but those in the given categories.

cached_entities()

return the whole entity cache

clear()

reset internal data

commit()

commit the current session’s transaction

commit_state

(None, ‘precommit’, ‘postcommit’, ‘uncommitable’)

critical(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

debug(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

6.3. The Request class (cubicweb.web.request) 205

Cubicweb Documentation, Release 3.38.10

delete_relation(fromeid, rtype, toeid)
provide direct access to the repository method to delete a relation.

This is equivalent to the following rql query:

DELETE X rtype Y WHERE X eid fromeid, T eid toeid

without read security check but also all the burden of rql execution. You may use this in hooks when you
know both eids of the relation you want to delete.

deleted_in_transaction(eid)
return True if the entity of the given eid is being deleted in the current transaction

deny_all_hooks_but(*categories)
Context manager to disable all hooks but those in the given categories.

drop_entity_cache()

Drop the whole entity cache.

entity_cache(eid)
get cache entity for eid

entity_type(eid)
Return entity type for the entity with id eid.

error(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

exception(msg, *args, exc_info=True, **kwargs)
Convenience method for logging an ERROR with exception information.

execute(rql, kwargs=None, build_descr=True)
db-api like method directly linked to the querier execute method.

See cubicweb.dbapi.Cursor.execute() documentation.

get_option_value(option)
Return the value for option in the configuration.

get_schema()

Return the schema currently used by the repository.

info(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

is_hook_activated(hook)
return a boolean telling if the given hook class is currently activated or not

is_hook_category_activated(category)
return a boolean telling if the given category is currently activated or not

pending_operations

ordered list of operations to be processed on commit/rollback

206 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

repo

server.Repository object

rollback()

rollback the current transaction

running_hooks_ops()

this context manager should be called whenever hooks or operations are about to be run (but after hook
selection)

It will help the undo logic record pertinent metadata or some hooks to run (or not) depending on who/what
issued the query.

set_entity_cache(entity)
Add entity to the connection entity cache

system_sql(sql, args=None, rollback_on_failure=True, rql_query_tracing_token=None)
return a sql cursor on the system database

transaction_actions(txuuid, public=True)
Return an ordered list of actions effectued during that transaction.

If public is true, return only ‘public’ actions, i.e. not ones triggered under the cover by hooks, else return
all actions.

raise NoSuchTransaction if the transaction is not found or if the user is not allowed (eg not in managers
group).

transaction_data

dict containing arbitrary data cleared at the end of the transaction

transaction_info(txuuid)
Return transaction object for the given uid.

raise NoSuchTransaction if not found or if session’s user is not allowed (eg not in managers group and the
transaction doesn’t belong to him).

undo_transaction(txuuid)
Undo the given transaction. Return potential restoration errors.

raise NoSuchTransaction if not found or if user is not allowed (eg not in managers group).

undoable_transactions(ueid=None, **actionfilters)
Return a list of undoable transaction objects by the connection’s user, ordered by descendant transaction
time.

Managers may filter according to user (eid) who has done the transaction using the ueid argument. Others
will only see their own transactions.

Additional filtering capabilities is provided by using the following named arguments:

• etype to get only transactions creating/updating/deleting entities of the given type

• eid to get only transactions applied to entity of the given eid

• action to get only transactions doing the given action (action in ‘C’, ‘U’, ‘D’, ‘A’, ‘R’). If etype, action
can only be ‘C’, ‘U’ or ‘D’.

• public: when additional filtering is provided, they are by default only searched in ‘public’ actions,
unless a public argument is given and set to false.

6.3. The Request class (cubicweb.web.request) 207

Cubicweb Documentation, Release 3.38.10

warning(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

class cubicweb.web.request.ConnectionCubicWebRequestBase(*args, **kwargs)

Vreg Vregistry,

Form Forms value

Headers dict, request header

6.4 RQL search bar

The RQL search bar is a visual component, hidden by default, the tiny search input being enough for common use
cases.

An autocompletion helper is provided to help you type valid queries, both in terms of syntax and in terms of schema
validity.

class cubicweb.web.views.magicsearch.RQLSuggestionsBuilder(*args, **kwargs)
This component was previously used by the rql_suggest ajax function to provide completion to the search bar. It
is now deprecated in favor of the cubicweb.rqlsuggestions.RQLSuggestionsBuilder class.

build_suggestions(user_rql)

6.4.1 How search is performed

You can use the rql search bar to either type RQL queries, plain text queries or standard shortcuts such as <EntityType>
or <EntityType> <attrname> <value>.

Ultimately, all queries are translated to rql since it’s the only language understood on the server (data) side. To transform
the user query into RQL, CubicWeb uses the so-called magicsearch component, defined in cubicweb.web.views.
magicsearch, which in turn delegates to a number of query preprocessor that are responsible of interpreting the user
query and generating corresponding RQL.

The code of the main processor loop is easy to understand:

for proc in self.processors:
try:

return proc.process_query(uquery, req)
except (RQLSyntaxError, BadRQLQuery):

pass

The idea is simple: for each query processor, try to translate the query. If it fails, try with the next processor, if it
succeeds, we’re done and the RQL query will be executed.

208 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

6.5 The View system

This chapter aims to describe the concept of a view used all along the development of a web application and how it has
been implemented in CubicWeb.

6.5.1 Principles

We’ll start with a description of the interface providing a basic understanding of the available classes and methods,
then detail the view selection principle.

A View is an object responsible for the rendering of data from the model into an end-user consummable form. They
typically churn out an XHTML stream, but there are views concerned with email other non-html outputs.

Discovering possible views

It is possible to configure the web user interface to have a left box showing all the views than can be applied to the
current result set.

To enable this, click on your login at the top right corner. Chose “user preferences”, then “boxes”, then “possible views
box” and check “visible = yes” before validating your changes.

The views listed there we either not selected because of a lower score, or they were deliberately excluded by the main
template logic.

Basic class for views

Class View

class cubicweb.view.View(req=None, rset=None, **kwargs)
This class is an abstraction of a view class, used as a base class for every renderable object such as views,
templates and other user interface components.

A View is instantiated to render a result set or part of a result set. View subclasses may be parametrized using
the following class attributes:

templatable indicates if the view may be embedded in a main template or if it has to be rendered stan-
dalone (i.e. pure XML views must not be embedded in the main template of HTML pages)

content_type if the view is not templatable, it should set the content_type class attribute to the correct
MIME type (text/xhtml being the default)

category this attribute may be used in the interface to regroup related objects (view kinds) together

paginable

binary

A view writes to its output stream thanks to its attribute w (the append method of an UStreamIO, except for
binary views).

At instantiation time, the standard _cw, and cw_rset attributes are added and the w attribute will be set at rendering
time to a write function to use.

The basic interface for views is as follows (remember that the result set has a tabular structure with rows and columns,
hence cells):

• render(**context), render the view by calling call or cell_call depending on the context

6.5. The View system 209

Cubicweb Documentation, Release 3.38.10

• call(**kwargs), call the view for a complete result set or null (the default implementation calls cell_call() on
each cell of the result set)

• cell_call(row, col, **kwargs), call the view for a given cell of a result set (row and col being integers used to
access the cell)

• url(), returns the URL enabling us to get the view with the current result set

• wview(__vid, rset, __fallback_vid=None, **kwargs), call the view of identifier __vid on the given result set. It
is possible to give a fallback view identifier that will be used if the requested view is not applicable to the result
set.

• html_headers(), returns a list of HTML headers to be set by the main template

• page_title(), returns the title to use in the HTML header title

Other basic view classes

Here are some of the subclasses of View defined in cubicweb.view that are more concrete as they relate to data
rendering within the application:

class cubicweb.view.EntityView(req=None, rset=None, **kwargs)
base class for views applying on an entity (i.e. uniform result set)

class cubicweb.view.StartupView(req=None, rset=None, **kwargs)
base class for views which doesn’t need a particular result set to be displayed (so they can always be displayed!)

class cubicweb.view.EntityStartupView(req, rset=None, **kwargs)
base class for entity views which may also be applied to None result set (usually a default rql is provided by the
view class)

class cubicweb.view.AnyRsetView(req=None, rset=None, **kwargs)
base class for views applying on any non empty result sets

Examples of views class

• Using templatable, content_type and HTTP cache configuration

class RSSView(XMLView):
__regid__ = 'rss'
title = _('rss')
templatable = False
content_type = 'text/xml'
http_cache_manager = MaxAgeHTTPCacheManager
cache_max_age = 60*60*2 # stay in http cache for 2 hours by default

• Using a custom selector

class SearchForAssociationView(EntityView):
"""view called by the edition view when the user asks
to search for something to link to the edited eid
"""
__regid__ = 'search-associate'
title = _('search for association')
__select__ = one_line_rset() & match_search_state('linksearch') & is_instance('Any')

210 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

XML views, binaries views. . .

For views generating other formats than HTML (an image generated dynamically for example), and which can not
simply be included in the HTML page generated by the main template (see above), you have to:

• set the attribute templatable of the class to False

• set, through the attribute content_type of the class, the MIME type generated by the view to application/octet-
stream or any relevant and more specialised mime type

For views dedicated to binary content creation (like dynamically generated images), we have to set the attribute binary
of the class to True (which implies that templatable == False, so that the attribute w of the view could be replaced by
a binary flow instead of unicode).

6.5.2 Templates

Templates are the entry point for the CubicWeb view system. As seen in Discovering possible views, there are two
kinds of views: the templatable and non-templatable.

Non-templatable views

Non-templatable views are standalone. They are responsible for all the details such as setting a proper content type (or
mime type), the proper document headers, namespaces, etc. Examples are pure xml views such as RSS or Semantic
Web views (SIOC, DOAP, FOAF, Linked Data, etc.), and views which generate binary files (pdf, excel files, etc.)

To notice that a view is not templatable, you just have to set the view’s class attribute templatable to False. In this case,
it should set the content_type class attribute to the correct MIME type. By default, it is text/xhtml. Additionally, if your
view generate a binary file, you have to set the view’s class attribute binary to True too.

Templatable views

Templatable views are not concerned with such pesky details. They leave it to the template. Conversely, the template’s
main job is to:

• set up the proper document header and content type

• define the general layout of a document

• invoke adequate views in the various sections of the document

Look at cubicweb.web.views.basetemplates and you will find the base templates used to generate (X)HTML for
your application. The most important template there is TheMainTemplate.

TheMainTemplate

Layout and sections

A page is composed as indicated on the schema below :

6.5. The View system 211

http://sioc-project.org/
http://trac.usefulinc.com/doap
http://www.foaf-project.org/
http://linkeddata.org/

Cubicweb Documentation, Release 3.38.10

The sections dispatches specific views:

• header: the rendering of the header is delegated to the htmlheader view, whose default implementation can be
found in basetemplates.py and which does the following things:

– inject the favicon if there is one

– inject the global style sheets and javascript resources

– call and display a link to an rss component if there is one available

it also sets up the page title, and fills the actual header section with top-level components, using the header view,
which:

– tries to display a logo, the name of the application and the breadcrumbs

– provides a login status area

– provides a login box (hiden by default)

• left column: this is filled with all selectable boxes matching the left context (there is also a right column but
nowadays it is seldom used due to bad usability)

• contentcol: this is the central column; it is filled with:

– the rqlinput view (hidden by default)

– the applmessages component

212 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

– the contentheader view which in turns dispatches all available content navigation components having the
navtop context (this is used to navigate through entities implementing the IPrevNext interface)

– the view that was given as input to the template’s call method, also dealing with pagination concerns

– the contentfooter

• footer: adds all footer actions

Note: How and why a view object is given to the main template is explained in the Publisher chapter.

Configure the main template

You can overload some methods of the TheMainTemplate, in order to fulfil your needs. There are also some attributes
and methods which can be defined on a view to modify the base template behaviour:

• paginable: if the result set is bigger than a configurable size, your result page will be paginated by default. You
can set this attribute to False to avoid this.

• binary: boolean flag telling if the view generates some text or a binary stream. Default to False. When view
generates text argument given to self.w must be a unicode string, encoded string otherwise.

• content_type, view’s content type, default to ‘text/xhtml’

• templatable, boolean flag telling if the view’s content should be returned directly (when False) or included in the
main template layout (including header, boxes and so on).

• page_title(), method that should return a title that will be set as page title in the html headers.

• html_headers(), method that should return a list of HTML headers to be included the html headers.

You can also modify certain aspects of the main template of a page when building a url or setting these parameters in
the req.form:

• __notemplate, if present (whatever the value assigned), only the content view is returned

• __force_display, if present and its value is not null, no pagination whatever the number of entities to display (e.g.
similar effect as view’s paginable attribute described above.

• __method, if the result set to render contains only one entity and this parameter is set, it refers to a method to call
on the entity by passing it the dictionary of the forms parameters, before going the classic way (through step 1
and 2 described juste above)

• vtitle, a title to be set as <h1> of the content

Other templates

There are also the following other standard templates:

• cubicweb.web.views.basetemplates.LogInTemplate

• cubicweb.web.views.basetemplates.LogOutTemplate

• cubicweb.web.views.basetemplates.ErrorTemplate specializes TheMainTemplate to do proper end-
user output if an error occurs during the computation of TheMainTemplate (it is a fallback view).

6.5. The View system 213

Cubicweb Documentation, Release 3.38.10

6.5.3 The Primary View

By default, CubicWeb provides a view that fits every available entity type. This is the first view you might be interested
in modifying. It is also one of the richest and most complex.

It is automatically selected on a one line result set containing an entity.

It lives in the cubicweb.web.views.primary module.

The primary view is supposed to render a maximum of informations about the entity.

Layout

The primary view has the following layout.

214 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

Primary view configuration

If you want to customize the primary view of an entity, overriding the primary view class may not be necessary. For
simple adjustments (attributes or relations display locations and styles), a much simpler way is to use uicfg.

Attributes/relations display location

In the primary view, there are three sections where attributes and relations can be displayed (represented in pink in the
image above):

• ‘attributes’

• ‘relations’

• ‘sideboxes’

Attributes can only be displayed in the attributes section (default behavior). They can also be hidden. By default,
attributes of type Password and Bytes are hidden.

For instance, to hide the title attribute of the Blog entity:

from cubicweb.web.views import uicfg
uicfg.primaryview_section.tag_attribute(('Blog', 'title'), 'hidden')

Relations can be either displayed in one of the three sections or hidden.

For relations, there are two methods:

• tag_object_of for modifying the primary view of the object

• tag_subject_of for modifying the primary view of the subject

These two methods take two arguments:

• a triplet (subject, relation_name, object), where subject or object can be replaced with '*'

• the section name or hidden

pv_section = uicfg.primaryview_section
hide every relation `entry_of` in the `Blog` primary view
pv_section.tag_object_of(('*', 'entry_of', 'Blog'), 'hidden')

display `entry_of` relations in the `relations`
section in the `BlogEntry` primary view
pv_section.tag_subject_of(('BlogEntry', 'entry_of', '*'), 'relations')

Display content

You can use primaryview_display_ctrl to customize the display of attributes or relations. Values of
primaryview_display_ctrl are dictionaries.

Common keys for attributes and relations are:

• vid: specifies the regid of the view for displaying the attribute or the relation.

If vid is not specified, the default value depends on the section:
– attributes section: ‘reledit’ view

– relations section: ‘autolimited’ view

6.5. The View system 215

Cubicweb Documentation, Release 3.38.10

– sideboxes section: ‘sidebox’ view

• order: int used to control order within a section. When not specified, automatically set according to order in
which tags are added.

• label: label for the relations section or side box

• showlabel: boolean telling whether the label is displayed

let us remind the schema of a blog entry
class BlogEntry(EntityType):

title = String(required=True, fulltextindexed=True, maxsize=256)
publish_date = Date(default='TODAY')
content = String(required=True, fulltextindexed=True)
entry_of = SubjectRelation('Blog', cardinality='?*')

now, we want to show attributes
with an order different from that in the schema definition
view_ctrl = uicfg.primaryview_display_ctrl
for index, attr in enumerate('title', 'content', 'publish_date'):

view_ctrl.tag_attribute(('BlogEntry', attr), {'order': index})

By default, relations displayed in the ‘relations’ section are being displayed by the ‘autolimited’ view. This view will
use comma separated values, or list view and/or limit your rset if there is too much items in it (and generate the “view
all” link in this case).

You can control this view by setting the following values in the primaryview_display_ctrl relation tag:

• limit, maximum number of entities to display. The value of the ‘navigation.related-limit’ cwproperty is used by
default (which is 8 by default). If None, no limit.

• use_list_limit, number of entities until which they should be display as a list (eg using the ‘list’ view). Below
that limit, the ‘csv’ view is used. If None, display using ‘csv’ anyway.

• subvid, the subview identifier (eg view that should be used of each item in the list)

Notice you can also use the filter key to set up a callback taking the related result set as argument and returning it
filtered, to do some arbitrary filtering that can’t be done using rql for instance.

pv_section = uicfg.primaryview_section
in `CWUser` primary view, display `created_by`
relations in relations section
pv_section.tag_object_of(('*', 'created_by', 'CWUser'), 'relations')

display this relation as a list, sets the label,
limit the number of results and filters on comments
def filter_comment(rset):

return rset.filtered_rset(lambda x: x.e_schema == 'Comment')
pv_ctrl = uicfg.primaryview_display_ctrl
pv_ctrl.tag_object_of(('*', 'created_by', 'CWUser'),

{'vid': 'list', 'label': _('latest comment(s):'),
'limit': True,
'filter': filter_comment})

Warning: with the primaryview_display_ctrl rtag, the subject or the object of the relation is ignored for
respectively tag_object_of or tag_subject_of. To avoid warnings during execution, they should be set to
'*'.

216 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

Example of customization and creation

We’ll show you now an example of a primary view and how to customize it.

If you want to change the way a BlogEntry is displayed, just override the method cell_call() of the view primary
in BlogDemo/views.py.

from cubicweb.predicates import is_instance
from cubicweb.web.views.primary import Primaryview

class BlogEntryPrimaryView(PrimaryView):
__select__ = PrimaryView.__select__ & is_instance('BlogEntry')

def render_entity_attributes(self, entity):
self.w(u'<p>published on %s</p>' %

entity.publish_date.strftime('%Y-%m-%d'))
super(BlogEntryPrimaryView, self).render_entity_attributes(entity)

The above source code defines a new primary view for BlogEntry. The __reid__ class attribute is not repeated there
since it is inherited through the primary.PrimaryView class.

The selector for this view chains the selector of the inherited class with its own specific criterion.

The view method self.w() is used to output data. Here lines 08-09 output HTML for the publication date of the entry.

Let us now improve the primary view of a blog

from logilab.mtconverter import xml_escape
from cubicweb.predicates import is_instance, one_line_rset
from cubicweb.web.views.primary import Primaryview

class BlogPrimaryView(PrimaryView):
__regid__ = 'primary'
__select__ = PrimaryView.__select__ & is_instance('Blog')
rql = 'Any BE ORDERBY D DESC WHERE BE entry_of B, BE publish_date D, B eid %(b)s'

def render_entity_relations(self, entity):
rset = self._cw.execute(self.rql, {'b' : entity.eid})
for entry in rset.entities():

self.w(u'<p>%s</p>' % entry.view('inblogcontext'))
(continues on next page)

6.5. The View system 217

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

class BlogEntryInBlogView(EntityView):
__regid__ = 'inblogcontext'
__select__ = is_instance('BlogEntry')

def cell_call(self, row, col):
entity = self.cw_rset.get_entity(row, col)
self.w(u'%s' %

entity.absolute_url(),
xml_escape(entity.content[:50]),
xml_escape(entity.description))

This happens in two places. First we override the render_entity_relations method of a Blog’s primary view. Here we
want to display our blog entries in a custom way.

At line 10, a simple request is made to build a result set with all the entities linked to the current Blog entity by the
relationship entry_of. The part of the framework handling the request knows about the schema and infers that such
entities have to be of the BlogEntry kind and retrieves them (in the prescribed publish_date order).

The request returns a selection of data called a result set. Result set objects have an .entities() method returning a
generator on requested entities (going transparently through the ORM layer).

At line 13 the view ‘inblogcontext’ is applied to each blog entry to output HTML. (Note that the ‘inblogcontext’ view
is not defined whatsoever in CubicWeb. You are absolutely free to define whole view families.) We juste arrange to
wrap each blogentry output in a ‘p’ html element.

Next, we define the ‘inblogcontext’ view. This is NOT a primary view, with its well-defined sections (title, metadata,
attribtues, relations/boxes). All a basic view has to define is cell_call.

Since views are applied to result sets which can be tables of data, we have to recover the entity from its (row,col)-
coordinates (line 20). Then we can spit some HTML.

Warning: Be careful: all strings manipulated in CubicWeb are actually unicode strings. While web browsers are
usually tolerant to incoherent encodings they are being served, we should not abuse it. Hence we have to properly
escape our data. The xml_escape() function has to be used to safely fill (X)HTML elements from Python unicode
strings.

Assuming we added entries to the blog titled MyLife, displaying it now allows to read its description and all its entries.

218 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

6.5.4 The “Click and Edit” (also reledit) View

The principal way to update data through the Web UI is through the modify action on entities, which brings a full form.
This is described in the HTML form construction chapter.

There is however another way to perform piecewise edition of entities and relations, using a specific reledit (for relation
edition) view from the cubicweb.web.views.reledit module.

This is typically applied from the default Primary View (see The Primary View) on the attributes and relation section.
It makes small editions more convenient.

Of course, this can be used customely in any other view. Here come some explanation about its capabilities and
instructions on the way to use it.

Using reledit

Let’s start again with a simple example:

class Company(EntityType):
name = String(required=True, unique=True)
boss = SubjectRelation('Person', cardinality='1*')
status = SubjectRelation('File', cardinality='?*', composite='subject')

In some view code we might want to show these attributes/relations and allow the user to edit each of them in turn
without having to leave the current page. We would write code as below:

company.view('reledit', rtype='name', default_value='<name>') # editable name attribute
company.view('reledit', rtype='boss') # editable boss relation
company.view('reledit', rtype='status') # editable attribute-like relation

If one wanted to edit the company from a boss’s point of view, one would have to indicate the proper relation’s role.
By default the role is subject.

6.5. The View system 219

Cubicweb Documentation, Release 3.38.10

person.view('reledit', rtype='boss', role='object')

Each of these will provide with a different editing widget. The name attribute will obviously get a text input field. The
boss relation will be edited through a selection box, allowing to pick another Person as boss. The status relation, given
that it defines Company as a composite entity with one file inside, will provide additional actions

• to add a File when there is one

• to delete the File (if the cardinality allows it)

Moreover, editing the relation or using the add action leads to an embedded edition/creation form allowing edition of
the target entity (which is File in our example) instead of merely allowing to choose amongst existing files.

The reledit_ctrl rtag

The behaviour of reledited attributes/relations can be finely controlled using the reledit_ctrl rtag, defined in cubicweb.
web.views.uicfg.

This rtag provides four control variables:

• default_value: alternative default value The default value is what is shown when there is no value.

• reload: boolean, eid (to reload to) or function taking subject and returning bool/eid This is useful when
editing a relation (or attribute) that impacts the url or another parts of the current displayed page. De-
faults to false.

• rvid: alternative view id (as str) for relation or composite edition Default is ‘incontext’ or ‘csv’ depending
on the cardinality. They can also be statically changed by subclassing ClickAndEditFormView and re-
defining _one_rvid (resp. _many_rvid).

• edit_target: ‘rtype’ (to edit the relation) or ‘related’ (to edit the related entity) This controls whether to
edit the relation or the target entity of the relation. Currently only one-to-one relations support target
entity edition. By default, the ‘related’ option is taken whenever the relation is composite and one-to-one.

Let’s see how to use these controls.

from logilab.mtconverter import xml_escape
from cubicweb.web.views.uicfg import reledit_ctrl
reledit_ctrl.tag_attribute(('Company', 'name'),

{'reload': lambda x:x.eid,
'default_value': xml_escape(u'<logilab tastes better>')})

reledit_ctrl.tag_object_of(('*', 'boss', 'Person'), {'edit_target': 'related'})

The default_value needs to be an xml escaped unicode string.

The edit_target tag on the boss relation being set to related will ensure edition of the Person entity instead (using a
standard automatic form) of the association of Company and Person.

Finally, the reload key accepts either a boolean, an eid or a unicode string representing a url. If an eid is provided, it will
be internally transformed into a url. The eid/url case helps when one needs to reload and the current url is inappropriate.
A common case is edition of a key attribute, which is part of the current url. If one user changed the Company’s name
from lozilab to logilab, reloading on http://myapp/company/lozilab would fail. Providing the entity’s eid, then, forces
to reload on something like http://myapp/company/42, which always work.

220 Chapter 6. Web Frontend Development

http://myapp/company/lozilab
http://myapp/company/42

Cubicweb Documentation, Release 3.38.10

Disable reledit

By default, reledit is available on attributes and relations displayed in the ‘attribute’ section of the default primary view.
If you want to disable it for some attribute or relation, you have use uicfg:

from cubicweb.web.views.uicfg import primaryview_display_ctrl as _pvdc
_pvdc.tag_attribute(('Company', 'name'), {'vid': 'incontext'})

To deactivate it everywhere it’s used automatically, you may use the code snippet below somewhere in your cube’s
views:

from cubicweb.web.views import reledit

class DeactivatedAutoClickAndEditFormView(reledit.AutoClickAndEditFormView):
def _should_edit_attribute(self, rschema):

return False

def _should_edit_attribute(self, rschema, role):
return False

def registration_callback(vreg):
vreg.register_and_replace(DeactivatedAutoClickAndEditFormView,

reledit.AutoClickAndEditFormView)

6.5.5 Base views

CubicWeb provides a lot of standard views, that can be found in cubicweb.web.views sub-modules.

A certain number of views are used to build the web interface, which apply to one or more entities. As other appobjects,
their identifier is what distinguish them from each others. The most generic ones, found in cubicweb.web.views.
baseviews, are described below.

You’ll probably want to customize one or more of the described views which are default, generic, implementations.

You will also find modules providing some specific services:

6.5.6 Startup views

Startup views are views requiring no context, from which you usually start browsing (for instance the index page). The
usual selectors are none_rset or yes.

You’ll find here a description of startup views provided by the framework.

Other startup views:

schema A view dedicated to the display of the schema of the instance

6.5. The View system 221

Cubicweb Documentation, Release 3.38.10

6.5.7 Boxes

(cubicweb.web.views.boxes)

sidebox This view displays usually a side box of some related entities in a primary view.

The action box

The add_related is an automatic menu in the action box that allows to create an entity automatically related to
the initial entity (context in which the box is displayed). By default, the links generated in this box are computed
from the schema properties of the displayed entity, but it is possible to explicitly specify them thanks to the cu-
bicweb.web.views.uicfg.rmode relation tag:

• link, indicates that a relation is in general created pointing to an existing entity and that we should not to display
a link for this relation

• create, indicates that a relation is in general created pointing to new entities and that we should display a link to
create a new entity and link to it automatically

If necessary, it is possible to overwrite the method relation_mode(rtype, targettype, x=’subject’) to dynamically com-
pute a relation creation category.

Please note that if at least one action belongs to the addrelated category, the automatic behavior is desactivated in favor
of an explicit behavior (e.g. display of addrelated category actions only).

6.5.8 Table views

Example

Let us take an example from the timesheet cube:

class ActivityResourcesTable(EntityView):
__regid__ = 'activity.resources.table'
__select__ = is_instance('Activity')

def call(self, showresource=True):
eids = ','.join(str(row[0]) for row in self.cw_rset)
rql = ('Any R,D,DUR,WO,DESCR,S,A, SN,RT,WT ORDERBY D DESC '

'WHERE '
' A is Activity, A done_by R, R title RT, '
' A diem D, A duration DUR, '
' A done_for WO, WO title WT, '
' A description DESCR, A in_state S, S name SN, '
' A eid IN (%s)' % eids)

rset = self._cw.execute(rql)
self.wview('resource.table', rset, 'null')

class ResourcesTable(RsetTableView):
__regid__ = 'resource.table'
notice you may wish a stricter selector to check rql's shape
__select__ = is_instance('Resource')
my table headers
headers = ['Resource', 'diem', 'duration', 'workpackage', 'description', 'state']
I want a table where attributes are editable (reledit inside)

(continues on next page)

222 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

finalvid = 'editable-final'

cellvids = {3: 'editable-final'}
display facets and actions with a menu
layout_args = {'display_filter': 'top',

'add_view_actions': None}

To obtain an editable table, you may specify the ‘editable-table’ view identifier using some of cellvids, finalvid or
nonfinalvid.

The previous example results in:

In order to activate table filter mechanism, the display_filter option is given as a layout argument. A small arrow will
be displayed at the table’s top right corner. Clicking on show filter form action, will display the filter form as below:

By the same way, you can display additional actions for the selected entities by setting add_view_actions layout option
to True. This will add actions returned by the view’s table_actions().

You can notice that all columns of the result set are not displayed. This is because of given headers, implying to display
only columns from 0 to len(headers).

Also Notice that the ResourcesTable view relies on a particular rql shape (which is not ensured by the way, the only
checked thing is that the result set contains instance of the Resource type). That usually implies that you can’t use this
view for user specific queries (e.g. generated by facets or typed manually).

So another option would be to write this view using EntityTableView, as below.

class ResourcesTable(EntityTableView):
__regid__ = 'resource.table'
__select__ = is_instance('Resource')
table columns definition
columns = ['resource', 'diem', 'duration', 'workpackage', 'description', 'in_state']
I want a table where attributes are editable (reledit inside)
finalvid = 'editable-final'
display facets and actions with a menu
layout_args = {'display_filter': 'top',

'add_view_actions': None}

def workpackage_cell(entity):
(continues on next page)

6.5. The View system 223

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

activity = entity.reverse_done_in[0]
activity.view('reledit', rtype='done_for', role='subject', w=w)

def workpackage_sortvalue(entity):
activity = entity.reverse_done_in[0]
return activity.done_for[0].sortvalue()

column_renderers = {
'resource': MainEntityColRenderer(),
'workpackage': EntityTableColRenderer(

header='Workpackage',
renderfunc=workpackage_cell,
sortfunc=workpackage_sortvalue,),

'in_state': EntityTableColRenderer(
renderfunc=lambda w,x: w(x.cw_adapt_to('IWorkflowable').printable_state),
sortfunc=lambda x: x.cw_adapt_to('IWorkflowable').printable_state),

}

Notice the following point:

• cell_<column>(w, entity) will be searched for rendering the content of a cell. If not found, column is expected
to be an attribute of entity.

• cell_sortvalue_<column>(entity) should return a typed value to use for javascript sorting or None for not sortable
columns (the default).

• The etable_entity_sortvalue() decorator will set a ‘sortvalue’ function for the column containing the main
entity (the one given as argument to all methods), which will call entity.sortvalue().

• You can set a column header using the etable_header_title() decorator. This header will be translated. If
it’s not an already existing msgid, think to mark it using _() (the example supposes headers are schema defined
msgid).

Pro/cons of each approach

EntityTableView and RsetableView provides basically the same set of features, though they don’t share the same
properties. Let’s try to sum up pro and cons of each class.

• EntityTableView view is:

– more verbose, but usually easier to understand

– easily extended (easy to add/remove columns for instance)

– doesn’t rely on a particular rset shape. Simply give it a title and will be listed in the ‘possible views’ box
if any.

• RsetTableView view is:

– hard to beat to display barely a result set, or for cases where some of headers, displaycols or cellvids could
be defined to enhance the table while you don’t care about e.g. pagination or facets.

– hardly extensible, as you usually have to change places where the view is called to modify the RQL (hence
the view’s result set shape).

224 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

6.5.9 XML and RSS views

(cubicweb.web.views.xmlrss)

Overview

rss Creates a RSS/XML view and call the view rssitem for each entity of the result set.

rssitem Create a RSS/XML view for each entity based on the results of the dublin core methods of the entity (dc_*)

RSS Channel Example

Assuming you have several blog entries, click on the title of the search box in the left column. A larger search box
should appear. Enter:

Any X ORDERBY D WHERE X is BlogEntry, X creation_date D

and you get a list of blog entries.

Click on your login at the top right corner. Chose “user preferences”, then “boxes”, then “possible views box” and
check “visible = yes” before validating your changes.

Enter the same query in the search box and you will see the same list, plus a box titled “possible views” in the left
column. Click on “entityview”, then “RSS”.

You just applied the “RSS” view to the RQL selection you requested.

That’s it, you have a RSS channel for your blog.

Try again with:

Any X ORDERBY D WHERE X is BlogEntry, X creation_date D,
X entry_of B, B title "MyLife"

Another RSS channel, but a bit more focused.

A last one for the road:

Any C ORDERBY D WHERE C is Comment, C creation_date D LIMIT 15

displayed with the RSS view, that’s a channel for the last fifteen comments posted.

[WRITE ME]

• show that the RSS view can be used to display an ordered selection of blog entries, thus providing a RSS channel

• show that a different selection (by category) means a different channel

6.5. The View system 225

Cubicweb Documentation, Release 3.38.10

6.5.10 URL publishing

(cubicweb.web.views.urlpublishing)

class cubicweb.web.views.urlpublishing.URLPublisherComponent(vreg, default_method='view')
Associate url path to view identifier / rql queries, by applying a chain of urlpathevaluator components.

An evaluator is a URLPathEvaluator subclass with an .evaluate_path method taking the request object and the
path to publish as argument. It will either return a publishing method identifier and an rql query on success or
raise a PathDontMatch exception on failure. URL evaluators are called according to their priority attribute, with
0 as the greatest priority and greater values as lower priority. The first evaluator returning a result or raising
something else than PathDontMatch will stop the handlers chain.

process(req, path)
Given a URL (essentially characterized by a path on the server, but additional information may be found
in the request object), return a publishing method identifier (e.g. controller) and an optional result set.

Parameters
• req (cubicweb_web.request.CubicWebRequestBase) – the request object

• path (str) – the path of the resource to publish. If empty, None or “/” “view” is used
as the default path.

Return type tuple(str, cubicweb.rset.ResultSet or None)

Returns the publishing method identifier and an optional result set

Raises NotFound – if no handler is able to decode the given path

You can write your own URLPathEvaluator class to handle custom paths. For instance, if you want /my-card-id to
redirect to the corresponding card’s primary view, you would write:

class CardWikiidEvaluator(URLPathEvaluator):
priority = 3 # make it be evaluated *before* RestPathEvaluator

def evaluate_path(self, req, segments):
if len(segments) != 1:

raise PathDontMatch()
rset = req.execute('Any C WHERE C wikiid %(w)s',

{'w': segments[0]})
if len(rset) == 0:

Raise NotFound if no card is found
raise PathDontMatch()

return None, rset

On the other hand, you can also deactivate some of the standard evaluators in your final application. The only thing
you have to do is to unregister them, for instance in a registration_callback in your cube:

def registration_callback(vreg):
vreg.unregister(RestPathEvaluator)

You can even replace the cubicweb.web.views.urlpublishing.URLPublisherComponent class if you want to
customize the whole toolchain process or if you want to plug into an early enough extension point to control your
request parameters:

class SanitizerPublisherComponent(URLPublisherComponent):
"""override default publisher component to explicitly ignore

(continues on next page)

226 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

unauthorized request parameters in anonymous mode.
"""
unauthorized_form_params = ('rql', 'vid', '__login', '__password')

def process(self, req, path):
if req.session.anonymous_session:

self._remove_unauthorized_params(req)
return super(SanitizerPublisherComponent, self).process(req, path)

def _remove_unauthorized_params(self, req):
for param in req.form.keys():

if param in self.unauthorized_form_params:
req.form.pop(param)

def registration_callback(vreg):
vreg.register_and_replace(SanitizerPublisherComponent, URLPublisherComponent)

class cubicweb.web.views.urlpublishing.RawPathEvaluator(urlpublisher)
handle path of the form:

<publishing_method>?parameters...

class cubicweb.web.views.urlpublishing.EidPathEvaluator(urlpublisher)
handle path with the form:

<eid>

class cubicweb.web.views.urlpublishing.URLRewriteEvaluator(urlpublisher)
tries to find a rewrite rule to apply

URL rewrite rule definitions are stored in URLRewriter objects

class cubicweb.web.views.urlpublishing.RestPathEvaluator(urlpublisher)
handle path with the form:

<etype>[[/<attribute name>]/<attribute value>]*

class cubicweb.web.views.urlpublishing.ActionPathEvaluator(urlpublisher)
handle path with the form:

<any evaluator path>/<action>

6.5. The View system 227

Cubicweb Documentation, Release 3.38.10

6.5.11 URL rewriting

(cubicweb.web.views.urlrewrite)

class cubicweb.web.views.urlrewrite.URLRewriter(req, **extra)
Base class for URL rewriters.

Url rewriters should have a rules dict that maps an input URI to something that should be used for rewriting.

The actual logic that defines how the rules dict is used is implemented in the rewrite method.

A priority attribute might be used to indicate which rewriter should be tried first. The higher the priority is, the
earlier the rewriter will be tried.

class cubicweb.web.views.urlrewrite.SimpleReqRewriter(req, **extra)
The SimpleReqRewriters uses a rules dict that maps input URI (regexp or plain string) to a dictionary to update
the request’s form.

If the input uri is a regexp, group substitution is allowed.

rewrite(req, uri)
for each input, output `in rules, if `uri matches input, req’s form is updated with output

class cubicweb.web.views.urlrewrite.SchemaBasedRewriter(req, **extra)
Here, the rules dict maps regexps or plain strings to callbacks that will be called with inputurl, uri, req, schema
as parameters.

SimpleReqRewriter is enough for a certain number of simple cases. If it is not sufficient, SchemaBasedRewriter
allows to do more elaborate things.

Here is an example of SimpleReqRewriter usage with plain string:

from cubicweb.web.views.urlrewrite import SimpleReqRewriter
class TrackerSimpleReqRewriter(SimpleReqRewriter):

rules = [
('/versions', dict(vid='versionsinfo')),
]

When the url is <base_url>/versions, the view with the __regid__ versionsinfo is displayed.

Here is an example of SimpleReqRewriter usage with regular expressions:

from cubicweb.web.views.urlrewrite import (
SimpleReqRewriter, rgx)

class BlogReqRewriter(SimpleReqRewriter):
rules = [

(rgx('/blogentry/([a-z_]+)\.rss'),
dict(rql=('Any X ORDERBY CD DESC LIMIT 20 WHERE X is BlogEntry,'

'X creation_date CD, X created_by U, '
'U login "%(user)s"'
% {'user': r'\1'}), vid='rss'))

]

When a url matches the regular expression, the view with the __regid__ rss which match the result set is displayed.

To deal with URL rewriting with an underlying RQL query, it is possible to specify the behaviour in the case of an
empty rset with the option empty_rset_raises_404.

228 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

The following example shows a SimpleReqRewriter usage with the empty_rset_raises_404 option set to True. In
this case, the path mycwetypeurl/pouet will return a 404. Without this option, it would return a 200.

from cubicweb.web.views.urlrewrite import (
SimpleReqRewriter, rgx)

class MyRewriter(SimpleReqRewriter):
rules = [(rgx(r'/mycwetypeurl/([^/]+)'),

dict(vid='primary',
rql=r'Any T WHERE T is CWEType, T name "\1"',
empty_rset_raises_404=True),)]

Here is an example of SchemaBasedRewriter usage:

from cubicweb.web.views.urlrewrite import (
SchemaBasedRewriter, rgx, build_rset)

class TrackerURLRewriter(SchemaBasedRewriter):
rules = [

(rgx('/project/([^/]+)/([^/]+)/tests'),
build_rset(rql='Version X WHERE X version_of P, P name %(project)s, X num

→˓%(num)s',
rgxgroups=[('project', 1), ('num', 2)], vid='versiontests')),

]

6.5.12 Breadcrumbs

Breadcrumbs are a navigation component to help the user locate himself along a path of entities.

Display

Breadcrumbs are displayed by default in the header section (see Layout and sections). With the default main template,
the header section is composed by the logo, the application name, breadcrumbs and, at the most right, the login box.
Breadcrumbs are displayed just next to the application name, thus they begin with a separator.

Here is the header section of the CubicWeb’s forge:

There are three breadcrumbs components defined in cubicweb.web.views.ibreadcrumbs:

• BreadCrumbEntityVComponent: displayed for a result set with one line if the entity is adaptable to
IBreadCrumbsAdapter.

• BreadCrumbETypeVComponent: displayed for a result set with more than one line, but with all entities of the
same type which can adapt to IBreadCrumbsAdapter.

• BreadCrumbAnyRSetVComponent: displayed for any other result set.

6.5. The View system 229

Cubicweb Documentation, Release 3.38.10

Building breadcrumbs

The IBreadCrumbsAdapter adapter is defined in the cubicweb.web.views.ibreadcrumbs module. It specifies
that an entity which implements this interface must have a breadcrumbs and a parent_entity method. A default
implementation for each is provided. This implementation expoits the ITreeAdapter.

Note: Redefining the breadcrumbs is the hammer way to do it. Another way is to define an ITreeAdapter adapter on
an entity type. If available, it will be used to compute breadcrumbs.

Here is the API of the IBreadCrumbsAdapter class:

IBreadCrumbsAdapter.parent_entity()

IBreadCrumbsAdapter.breadcrumbs(view=None, recurs=None)
return a list containing some:

• tuple (url, label)

• entity

• simple label string

defining path from a root to the current view

the main view is given as argument so breadcrumbs may vary according to displayed view (may be None). When
recursing on a parent entity, the recurs argument should be a set of already traversed nodes (infinite loop safety
belt).

If the breadcrumbs method return a list of entities, the cubicweb.web.views.ibreadcrumbs.BreadCrumbView is
used to display the elements.

By default, for any entity, if recurs=True, breadcrumbs method returns a list of entities, else a list of a simple string.

In order to see a hierarchical breadcrumbs, entities must have a parent method which returns the parent entity. By
default this method doesn’t exist on entity, given that it can not be guessed.

6.5.13 The ‘download’ views

Components

class cubicweb.web.views.idownloadable.DownloadBox(*args, **kwargs)
add download box

Download views

class cubicweb.web.views.idownloadable.DownloadView(req=None, rset=None, **kwargs)
download view

this view is replacing the deprecated ‘download’ controller and allow downloading of entities providing the
necessary interface

class cubicweb.web.views.idownloadable.DownloadLinkView(req=None, rset=None, **kwargs)
view displaying a link to download the file

class cubicweb.web.views.idownloadable.IDownloadablePrimaryView(req=None, rset=None,
**kwargs)

230 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

class cubicweb.web.views.idownloadable.IDownloadableOneLineView(req=None, rset=None,
**kwargs)

Embedded views

class cubicweb.web.views.idownloadable.ImageView(req=None, rset=None, **kwargs)
image embedded view

class cubicweb.web.views.idownloadable.EHTMLView(req=None, rset=None, **kwargs)
html embedded view

6.5.14 Online documentation system

Help views

class cubicweb.web.views.wdoc.InlineHelpView(req=None, rset=None, **kwargs)

Actions

class cubicweb.web.views.wdoc.HelpAction(req, **extra)

class cubicweb.web.views.wdoc.AboutAction(req, **extra)

6.6 Configuring the user interface

6.6.1 Relation tags

A RelationTag object is an object which allows to link a configuration information to a relation definition. For instance,
the standard primary view uses a RelationTag object (uicfg.primaryview_section) to get the section to display relations.

display ``entry_of`` relations in the ``relations`` section in the ``BlogEntry`` primary␣
→˓view
uicfg.primaryview_section.tag_subject_of(('BlogEntry', 'entry_of', '*'),

'relations')

hide every relation ``entry_of`` in the ``Blog`` primary view
uicfg.primaryview_section.tag_object_of(('*', 'entry_of', 'Blog'), 'hidden')

Three primitives are defined:
• tag_subject_of tag a relation in the subject’s context

• tag_object_of tag a relation in the object’s context

• tag_attribute shortcut for tag_subject_of

6.6. Configuring the user interface 231

Cubicweb Documentation, Release 3.38.10

6.6.2 The uicfg module

Note: The part of uicfg that deals with primary views is in the Primary view configuration chapter.

6.6.3 The uihelper module

6.7 Ajax

Warning: This approach is deprecated in favor of using cwclientlibjs. If your use react for your UI, try the react
components from the cwelements library. The documentation is kept here as reference.

For historical reference of what Ajax is and used to be, one can read the wikipedia article about Ajax.

CubicWeb provides a few helpers to facilitate javascript <-> python communications.

You can, for instance, register some python functions that will become callable from javascript through ajax calls. All
the ajax URLs are handled by the cubicweb.web.views.ajaxcontroller.AjaxController controller.

6.8 Javascript

CubicWeb uses quite a bit of javascript in its user interface and ships with jquery (1.3.x) and parts of the jquery UI
library, plus a number of homegrown files and also other third party libraries.

All javascript files are stored in cubicweb/web/data/. There are around thirty js files there. In a cube it goes to data/.

Obviously one does not want javascript pieces to be loaded all at once, hence the framework provides a number of
mechanisms and conventions to deal with javascript resources.

6.8.1 Conventions

It is good practice to name cube specific js files after the name of the cube, like this : ‘cube.mycube.js’, so as to avoid
name clashes.

6.8.2 Server-side Javascript API

Javascript resources are typically loaded on demand, from views. The request object (available as self._cw from most
application objects, for instance views and entities objects) has a few methods to do that:

• add_js(self, jsfiles, localfile=True) which takes a sequence of javascript files and writes proper entries into the
HTML header section. The localfile parameter allows to declare resources which are not from web/data (for
instance, residing on a content delivery network).

• add_onload(self, jscode) which adds one raw javascript code snippet inline in the html headers. This is quite
useful for setting up early jQuery(document).ready(. . .) initialisations.

232 Chapter 6. Web Frontend Development

https://www.npmjs.com/package/@logilab/cwclientlibjs
https://www.npmjs.com/package/@logilab/cwelements
https://en.wikipedia.org/wiki/Ajax_(programming)

Cubicweb Documentation, Release 3.38.10

6.8.3 Javascript events

• server-response: this event is triggered on HTTP responses (both standard and ajax). The two following extra
parameters are passed to callbacks :

– ajax: a boolean that says if the reponse was issued by an ajax request

– node: the DOM node returned by the server in case of an ajax request, otherwise the document itself for
standard HTTP requests.

6.8.4 Important javascript AJAX APIS

• asyncRemoteExec and remoteExec are the base building blocks for doing arbitrary async (resp. sync) communi-
cations with the server

• reloadComponent is a convenience function to replace a DOM node with server supplied content coming from
a specific registry (this is quite handy to refresh the content of some boxes for instances)

• jQuery.fn.loadxhtml is an important extension to jQuery which allows proper loading and in-place DOM update
of xhtml views. It is suitably augmented to trigger necessary events, and process CubicWeb specific elements
such as the facet system, fckeditor, etc.

6.8.5 A simple example with asyncRemoteExec

On the python side, we have to define an cubicweb.web.views.ajaxcontroller.AjaxFunction object. The
simplest way to do that is to use the cubicweb.web.views.ajaxcontroller.ajaxfunc() decorator (for more
details on this, refer to Ajax).

On the javascript side, we do the asynchronous call. Notice how it creates a deferred object. Proper treatment of the
return value or error handling has to be done through the addCallback and addErrback methods.

6.8.6 Anatomy of a reloadComponent call

reloadComponent allows to dynamically replace some DOM node with new elements. It has the following signature:

• compid (mandatory) is the name of the component to be reloaded

• rql (optional) will be used to generate a result set given as argument to the selected component

• registry (optional) defaults to ‘components’ but can be any other valid registry name

• nodeid (optional) defaults to compid + ‘Component’ but can be any explicitly specified DOM node id

• extraargs (optional) should be a dictionary of values that will be given to the cell_call method of the component

6.8.7 A simple reloadComponent example

The server side implementation of reloadComponent is the cubicweb.web.views.ajaxcontroller.component()
AjaxFunction appobject.

The following function implements a two-steps method to delete a standard bookmark and refresh the UI, while keeping
the UI responsive.

6.8. Javascript 233

Cubicweb Documentation, Release 3.38.10

function removeBookmark(beid) {
d = asyncRemoteExec('delete_bookmark', beid);
d.addCallback(function(boxcontent) {

reloadComponent('bookmarks_box', '', 'boxes', 'bookmarks_box');
document.location.hash = '#header';
updateMessage(_("bookmark has been removed"));

});
}

reloadComponent is called with the id of the bookmark box as argument, no rql expression (because the bookmarks
display is actually independant of any dataset context), a reference to the ‘boxes’ registry (which hosts all left, right and
contextual boxes) and finally an explicit ‘bookmarks_box’ nodeid argument that stipulates the target DOM node.

6.8.8 Anatomy of a loadxhtml call

jQuery.fn.loadxhtml is an important extension to jQuery which allows proper loading and in-place DOM update of
xhtml views. The existing jQuery.load function does not handle xhtml, hence the addition. The API of loadxhtml is
roughly similar to that of jQuery.load.

• url (mandatory) should be a complete url (typically referencing the cubicweb.web.views.ajaxcontroller.
AjaxController, but this is not strictly mandatory)

• data (optional) is a dictionary of values given to the controller specified through an url argument; some keys may
have a special meaning depending on the choosen controller (such as fname for the JSonController); the callback
key, if present, must refer to a function to be called at the end of loadxhtml (more on this below)

• reqtype (optional) specifies the request method to be used (get or post); if the argument is ‘post’, then the post
method is used, otherwise the get method is used

• mode (optional) is one of replace (the default) which means the loaded node will replace the current node content,
swap to replace the current node with the loaded node, and append which will append the loaded node to the
current node content

About the callback option:

• it is called with two parameters: the current node, and a list containing the loaded (and post-processed node)

• whenever it returns another function, this function is called in turn with the same parameters as above

This mechanism allows callback chaining.

6.8.9 A simple example with loadxhtml

Here we are concerned with the retrieval of a specific view to be injected in the live DOM. The view will be of course
selected server-side using an entity eid provided by the client side.

from cubicweb.web.views.ajaxcontroller import ajaxfunc

@ajaxfunc(output_type='xhtml')
def frob_status(self, eid, frobname):

entity = self._cw.entity_from_eid(eid)
return entity.view('frob', name=frobname)

234 Chapter 6. Web Frontend Development

http://api.jquery.com/load/
http://api.jquery.com/load/

Cubicweb Documentation, Release 3.38.10

function updateSomeDiv(divid, eid, frobname) {
var params = {fname:'frob_status', eid: eid, frobname:frobname};
jQuery('#'+divid).loadxhtml(JSON_BASE_URL, params, 'post');

}

In this example, the url argument is the base json url of a cube instance (it should contain something like
http://myinstance/ajax?). The actual AjaxController method name is encoded in the params dictionary using the fname
key.

6.8.10 A more real-life example

A frequent need of Web 2 applications is the delayed (or demand driven) loading of pieces of the DOM. This is typically
achieved using some preparation of the initial DOM nodes, jQuery event handling and proper use of loadxhtml.

We present here a skeletal version of the mecanism used in CubicWeb and available in web/views/tabs.py, in the
LazyViewMixin class.

def lazyview(self, vid, rql=None):
""" a lazy version of wview """
self._cw.add_js('cubicweb.lazy.js')
urlparams = {'vid' : vid, 'fname' : 'view'}
if rql is not None:

urlparams['rql'] = rql
self.w(u'<div id="lazy-%s" cubicweb:loadurl="%s">',

vid, xml_escape(self._cw.build_url('json', **urlparams)))
self.w(u'</div>')
self._cw.add_onload(u"""

jQuery('#lazy-%(vid)s').bind('%(event)s', function() {
loadNow('#lazy-%(vid)s');});"""

% {'event': 'load_%s' % vid, 'vid': vid})

This creates a div with a specific event associated to it.

The full version deals with:

• optional parameters such as an entity eid, an rset

• the ability to further reload the fragment

• the ability to display a spinning wheel while the fragment is still not loaded

• handling of browsers that do not support ajax (search engines, text-based browsers such as lynx, etc.)

The javascript side is quite simple, due to loadxhtml awesomeness.

function loadNow(eltsel) {
var lazydiv = jQuery(eltsel);
lazydiv.loadxhtml(lazydiv.attr('cubicweb:loadurl'));

}

This is all significantly different of the previous simple example (albeit this example actually comes from real-life code).

Notice how the cubicweb:loadurl is used to convey the url information. The base of this url is similar to the global
javascript JSON_BASE_URL. According to the pattern described earlier, the fname parameter refers to the standard
js_view method of the JSonController. This method renders an arbitrary view provided a view id (or vid) is provided,
and most likely an rql expression yielding a result set against which a proper view instance will be selected.

6.8. Javascript 235

Cubicweb Documentation, Release 3.38.10

The cubicweb:loadurl is one of the 29 attributes extensions to XHTML in a specific cubicweb namespace. It is a means
to pass information without breaking HTML nor XHTML compliance and without resorting to ungodly hacks.

Given all this, it is easy to add a small nevertheless useful feature to force the loading of a lazy view (for instance, a
very computation-intensive web page could be scinded into one fast-loading part and a delayed part).

On the server side, a simple call to a javascript function is sufficient.

def forceview(self, vid):
"""trigger an event that will force immediate loading of the view
on dom readyness
"""
self._cw.add_onload("triggerLoad('%s');" % vid)

The browser-side definition follows.

function triggerLoad(divid) {
jQuery('#lazy-' + divd).trigger('load_' + divid);

}

6.8.11 Javascript library: overview

• jquery.* : jquery and jquery UI library

• cubicweb.ajax.js : concentrates all ajax related facilities (it extends jQuery with the loahxhtml function, pro-
vides a handfull of high-level ajaxy operations like asyncRemoteExec, reloadComponent, replacePageChunk,
getDomFromResponse)

• cubicweb.python.js : adds a number of practical extension to stdanrd javascript objects (on Date, Array, String,
some list and dictionary operations), and a pythonesque way to build classes. Defines a CubicWeb namespace.

• cubicweb.htmlhelpers.js : a small bag of convenience functions used in various other cubicweb javascript re-
sources (baseuri, progress cursor handling, popup login box, html2dom function, etc.)

• cubicweb.widgets.js : provides a widget namespace and constructors and helpers for various widgets (mainly
facets and timeline)

• cubicweb.edition.js : used by edition forms

• cubicweb.preferences.js : used by the preference form

• cubicweb.facets.js : used by the facets mechanism

There is also javascript support for massmailing, gmap (google maps), fckcwconfig (fck editor), timeline, calendar, goa
(CubicWeb over AppEngine), flot (charts drawing), tabs and bookmarks.

6.8.12 API

6.8.13 Testing javascript

You with the cubicweb.qunit.QUnitTestCase can include standard Qunit tests inside the python unittest run
. You simply have to define a new class that inherit from QUnitTestCase and register your javascript test file
in the all_js_tests lclass attribut. This all_js_tests is a sequence a 3-tuple (<test_file, [<dependencies> ,]
[<data_files>]):

The <test_file> should contains the qunit test. <dependencies> defines the list of javascript file that must be imported
before the test script. Dependencies are included their definition order. <data_files> are additional files copied in the
test directory. both <dependencies> and <data_files> are optionnal. jquery.js is preincluded in for all test.

236 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

from cubicweb.qunit import QUnitTestCase

class MyQUnitTest(QUnitTestCase):

all_js_tests = (
("relative/path/to/my_simple_testcase.js",)
("relative/path/to/my_qunit_testcase.js",(

"rel/path/to/dependency_1.js",
"rel/path/to/dependency_2.js",)),

("relative/path/to/my_complexe_qunit_testcase.js",(
"rel/path/to/dependency_1.js",
"rel/path/to/dependency_2.js",

),(
"rel/path/file_dependency.html",
"path/file_dependency.json")

),
)

6.9 CSS Stylesheet

6.9.1 Conventions

6.9.2 Extending / overriding existing styles

We cannot modify the order in which the application is reading the CSS. In the case we want to create new CSS style,
the best is to define it a in a new CSS located under myapp/data/ and use those new styles while writing customized
views and templates.

If you want to modify an existing CSS styling property, you will have to use !important declaration to override the
existing property. The application apply a higher priority on the default CSS and you can not change that. Customized
CSS will not be read first.

6.9.3 CubicWeb stylesheets

6.10 Edition control

This chapter covers the editing capabilities of CubicWeb. It explains html Form construction, the Edit Controller and
their interactions.

6.10.1 HTML form construction

CubicWeb provides the somewhat usual form / field / widget / renderer abstraction to provide generic building blocks
which will greatly help you in building forms properly integrated with CubicWeb (coherent display, error handling,
etc. . .), while keeping things as flexible as possible.

A form basically only holds a set of fields, and has te be bound to a renderer which is responsible to layout them.
Each field is bound to a widget that will be used to fill in value(s) for that field (at form generation time) and ‘decode’
(fetch and give a proper Python type to) values sent back by the browser.

6.9. CSS Stylesheet 237

Cubicweb Documentation, Release 3.38.10

The field should be used according to the type of what you want to edit. E.g. if you want to edit some date, you’ll
have to use the cubicweb.web.formfields.DateField. Then you can choose among multiple widgets to edit it,
for instance cubicweb.web.formwidgets.TextInput (a bare text field), DateTimePicker (a simple calendar) or
even JQueryDatePicker (the JQuery calendar). You can of course also write your own widget.

Exploring the available forms

A small excursion into a CubicWeb shell is the quickest way to discover available forms (or application objects in
general).

>>> from pprint import pprint
>>> pprint(session.vreg['forms'])
{'base': [<class 'cubicweb.web.views.forms.FieldsForm'>,

<class 'cubicweb.web.views.forms.EntityFieldsForm'>],
'changestate': [<class 'cubicweb.web.views.workflow.ChangeStateForm'>,

<class 'cubicweb_tracker.views.forms.VersionChangeStateForm'>],
'composite': [<class 'cubicweb.web.views.forms.CompositeForm'>,

<class 'cubicweb.web.views.forms.CompositeEntityForm'>],
'deleteconf': [<class 'cubicweb.web.views.editforms.DeleteConfForm'>],
'edition': [<class 'cubicweb.web.views.autoform.AutomaticEntityForm'>,

<class 'cubicweb.web.views.workflow.TransitionEditionForm'>,
<class 'cubicweb.web.views.workflow.StateEditionForm'>],

'logform': [<class 'cubicweb.web.views.basetemplates.LogForm'>],
'massmailing': [<class 'cubicweb.web.views.massmailing.MassMailingForm'>],
'muledit': [<class 'cubicweb.web.views.editforms.TableEditForm'>]}

The two most important form families here (for all practical purposes) are base and edition. Most of the time one wants
alterations of the AutomaticEntityForm to generate custom forms to handle edition of an entity.

The Automatic Entity Form

Anatomy of a choices function

Let’s have a look at the ticket_done_in_choices function given to the choices parameter of the relation tag that is applied
to the (‘Ticket’, ‘done_in’, ‘*’) relation definition, as it is both typical and sophisticated enough. This is a code snippet
from the tracker cube.

The Ticket entity type can be related to a Project and a Version, respectively through the concerns and done_in
relations. When a user is about to edit a ticket, we want to fill the combo box for the done_in relation with values
pertinent with respect to the context. The important context here is:

• creation or modification (we cannot fetch values the same way in either case)

• __linkto url parameter given in a creation context

from cubicweb.web import formfields

def ticket_done_in_choices(form, field):
entity = form.edited_entity
first see if its specified by __linkto form parameters
linkedto = form.linked_to[('done_in', 'subject')]
if linkedto:

return linkedto
it isn't, get initial values

(continues on next page)

238 Chapter 6. Web Frontend Development

https://forge.extranet.logilab.fr/cubicweb/cubes/tracker

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

vocab = field.relvoc_init(form)
veid = None
try to fetch the (already or pending) related version and project
if not entity.has_eid():

peids = form.linked_to[('concerns', 'subject')]
peid = peids and peids[0]

else:
peid = entity.project.eid
veid = entity.done_in and entity.done_in[0].eid

if peid:
we can complete the vocabulary with relevant values
rschema = form._cw.vreg.schema['done_in'].rdef('Ticket', 'Version')
rset = form._cw.execute(

'Any V, VN ORDERBY version_sort_value(VN) '
'WHERE V version_of P, P eid %(p)s, V num VN, '
'V in_state ST, NOT ST name "published"', {'p': peid}, 'p')

vocab += [(v.view('combobox'), v.eid) for v in rset.entities()
if rschema.has_perm(form._cw, 'add', toeid=v.eid)
and v.eid != veid]

return vocab

The first thing we have to do is fetch potential values from the __linkto url parameter that is often found in en-
tity creation contexts (the creation action provides such a parameter with a predetermined value; for instance in this
case, ticket creation could occur in the context of a Version entity). The RelationField field class provides a
relvoc_linkedto() method that gets a list suitably filled with vocabulary values.

linkedto = field.relvoc_linkedto(form)
if linkedto:

return linkedto

Then, if no __linkto argument was given, we must prepare the vocabulary with an initial empty value (because
done_in is not mandatory, we must allow the user to not select a verson) and already linked values. This is done with
the relvoc_init() method.

vocab = field.relvoc_init(form)

But then, we have to give more: if the ticket is related to a project, we should provide all the non published versions
of this project (Version and Project can be related through the version_of relation). Conversely, if we do not know yet
the project, it would not make sense to propose all existing versions as it could potentially lead to incoherences. Even
if these will be caught by some RQLConstraint, it is wise not to tempt the user with error-inducing candidate values.

The “ticket is related to a project” part must be decomposed as:

• this is a new ticket which is created is the context of a project

• this is an already existing ticket, linked to a project (through the concerns relation)

• there is no related project (quite unlikely given the cardinality of the concerns relation, so it can only mean that
we are creating a new ticket, and a project is about to be selected but there is no __linkto argument)

Note: the last situation could happen in several ways, but of course in a polished application, the paths to ticket creation
should be controlled so as to avoid a suboptimal end-user experience

Hence, we try to fetch the related project.

6.10. Edition control 239

Cubicweb Documentation, Release 3.38.10

veid = None
if not entity.has_eid():

peids = form.linked_to[('concerns', 'subject')]
peid = peids and peids[0]

else:
peid = entity.project.eid
veid = entity.done_in and entity.done_in[0].eid

We distinguish between entity creation and entity modification using the Entity.has_eid() method, which returns
False on creation. At creation time the only way to get a project is through the __linkto parameter. Notice that we
fetch the version in which the ticket is done_in if any, for later.

Note: the implementation above assumes that if there is a __linkto parameter, it is only about a project. While it
makes sense most of the time, it is not an absolute. Depending on how an entity creation action action url is built,
several outcomes could be possible there

If the ticket is already linked to a project, fetching it is trivial. Then we add the relevant version to the initial vocabulary.

if peid:
rschema = form._cw.vreg.schema['done_in'].rdef('Ticket', 'Version')
rset = form._cw.execute(

'Any V, VN ORDERBY version_sort_value(VN) '
'WHERE V version_of P, P eid %(p)s, V num VN, '
'V in_state ST, NOT ST name "published"', {'p': peid})

vocab += [(v.view('combobox'), v.eid) for v in rset.entities()
if rschema.has_perm(form._cw, 'add', toeid=v.eid)
and v.eid != veid]

Warning: we have to defend ourselves against lack of a project eid. Given the cardinality of the concerns relation,
there must be a project, but this rule can only be enforced at validation time, which will happen of course only after
form subsmission

Here, given a project eid, we complete the vocabulary with all unpublished versions defined in the project (sorted by
number) for which the current user is allowed to establish the relation.

Building self-posted form with custom fields/widgets

Sometimes you want a form that is not related to entity edition. For those, you’ll have to handle form posting by
yourself. Here is a complete example on how to achieve this (and more).

Imagine you want a form that selects a month period. There are no proper field/widget to handle this in CubicWeb, so
let’s start by defining them:

let's have the whole import list at the beginning, even those necessary for
subsequent snippets
from logilab.common import date
from logilab.mtconverter import xml_escape
from cubicweb.view import View
from cubicweb.predicates import match_kwargs
from cubicweb.web import RequestError, ProcessFormError

(continues on next page)

240 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

from cubicweb.web import formfields as fields, formwidgets as wdgs
from cubicweb.web.views import forms, calendar

class MonthSelect(wdgs.Select):
"""Custom widget to display month and year. Expect value to be given as a
date instance.
"""

def format_value(self, form, field, value):
return u'%s/%s' % (value.year, value.month)

def process_field_data(self, form, field):
val = super(MonthSelect, self).process_field_data(form, field)
try:

year, month = val.split('/')
year = int(year)
month = int(month)
return date.date(year, month, 1)

except ValueError:
raise ProcessFormError(

form._cw._('badly formated date string %s') % val)

class MonthPeriodField(fields.CompoundField):
"""custom field composed of two subfields, 'begin_month' and 'end_month'.

It expects to be used on form that has 'mindate' and 'maxdate' in its
extra arguments, telling the range of month to display.
"""

def __init__(self, *args, **kwargs):
kwargs.setdefault('widget', wdgs.IntervalWidget())
super(MonthPeriodField, self).__init__(

[fields.StringField(name='begin_month',
choices=self.get_range, sort=False,
value=self.get_mindate,
widget=MonthSelect()),

fields.StringField(name='end_month',
choices=self.get_range, sort=False,
value=self.get_maxdate,
widget=MonthSelect())], *args, **kwargs)

@staticmethod
def get_range(form, field):

mindate = date.todate(form.cw_extra_kwargs['mindate'])
maxdate = date.todate(form.cw_extra_kwargs['maxdate'])
assert mindate <= maxdate
_ = form._cw._
months = []
while mindate <= maxdate:

label = '%s %s' % (_(calendar.MONTHNAMES[mindate.month - 1]),
mindate.year)

(continues on next page)

6.10. Edition control 241

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

value = field.widget.format_value(form, field, mindate)
months.append((label, value))
mindate = date.next_month(mindate)

return months

@staticmethod
def get_mindate(form, field):

return form.cw_extra_kwargs['mindate']

@staticmethod
def get_maxdate(form, field):

return form.cw_extra_kwargs['maxdate']

def process_posted(self, form):
for field, value in super(MonthPeriodField, self).process_posted(form):

if field.name == 'end_month':
value = date.last_day(value)

yield field, value

Here we first define a widget that will be used to select the beginning and the end of the period, displaying months like
‘<month> YYYY’ but using ‘YYYY/mm’ as actual value.

We then define a field that will actually hold two fields, one for the beginning and another for the end of the period.
Each subfield uses the widget we defined earlier, and the outer field itself uses the standard IntervalWidget. The
field adds some logic:

• a vocabulary generation function get_range, used to populate each sub-field

• two ‘value’ functions get_mindate and get_maxdate, used to tell to subfields which value they should consider
on form initialization

• overriding of process_posted, called when the form is being posted, so that the end of the period is properly set
to the last day of the month.

Now, we can define a very simple form:

class MonthPeriodSelectorForm(forms.FieldsForm):
__regid__ = 'myform'
__select__ = match_kwargs('mindate', 'maxdate')

form_buttons = [wdgs.SubmitButton()]
form_renderer_id = 'onerowtable'
period = MonthPeriodField()

where we simply add our field, set a submit button and use a very simple renderer (try others!). Also we specify a
selector that ensures form will have arguments necessary to our field.

Now, we need a view that will wrap the form and handle post when it occurs, simply displaying posted values in the
page:

class SelfPostingForm(View):
__regid__ = 'myformview'

def call(self):
mindate, maxdate = date.date(2010, 1, 1), date.date(2012, 1, 1)

(continues on next page)

242 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

form = self._cw.vreg['forms'].select(
'myform', self._cw, mindate=mindate, maxdate=maxdate, action='')

try:
posted = form.process_posted()
self.w(u'<p>posted values %s</p>' % xml_escape(repr(posted)))

except RequestError: # no specified period asked
pass

form.render(w=self.w, formvalues=self._cw.form)

Notice usage of the process_posted() method, that will return a dictionary of typed values (because they have been
processed by the field). In our case, when the form is posted you should see a dictionary with ‘begin_month’ and
‘end_month’ as keys with the selected dates as value (as a python date object).

APIs

6.10.2 Dissection of an entity form

This is done (again) with a vanilla instance of the tracker cube. We will populate the database with a bunch of entities
and see what kind of job the automatic entity form does.

Populating the database

We should start by setting up a bit of context: a project with two unpublished versions, and a ticket linked to the project
and the first version.

>>> p = rql('INSERT Project P: P name "cubicweb"')
>>> for num in ('0.1.0', '0.2.0'):
... rql('INSERT Version V: V num "%s", V version_of P WHERE P eid %%(p)s' % num, {'p':␣
→˓p[0][0]})
...
<resultset 'INSERT Version V: V num "0.1.0", V version_of P WHERE P eid %(p)s' (1 rows):␣
→˓[765L] (('Version',))>
<resultset 'INSERT Version V: V num "0.2.0", V version_of P WHERE P eid %(p)s' (1 rows):␣
→˓[766L] (('Version',))>
>>> t = rql('INSERT Ticket T: T title "let us write more doc", T done_in V, '

'T concerns P WHERE V num "0.1.0"', P eid %(p)s', {'p': p[0][0]})
>>> commit()

Now let’s see what the edition form builds for us.

>>> cnx.use_web_compatible_requests('http://fakeurl.com')
>>> req = cnx.request()
>>> form = req.vreg['forms'].select('edition', req, rset=rql('Ticket T'))
>>> html = form.render()

Note: In order to play interactively with web side application objects, we have to cheat a bit to have request object that
will looks like HTTP request object, by calling use_web_compatible_requests() on the connection.

This creates an automatic entity form. The .render() call yields an html (unicode) string. The html output is shown
below (with internal fieldset omitted).

6.10. Edition control 243

https://forge.extranet.logilab.fr/cubicweb/cubes/tracker

Cubicweb Documentation, Release 3.38.10

Looking at the html output

The form enveloppe

<div class="iformTitle">main informations</div>
<div class="formBody">
<form action="http://crater:9999/validateform" method="post" enctype="application/x-www-
→˓form-urlencoded"

id="entityForm" onsubmit="return freezeFormButtons('entityForm');"
class="entityForm" target="eformframe">

<div id="progress">validating...</div>
<fieldset>
<input name="__form_id" type="hidden" value="edition" />
<input name="__errorurl" type="hidden" value="http://perdu.com#entityForm" />
<input name="__domid" type="hidden" value="entityForm" />
<input name="__type:763" type="hidden" value="Ticket" />
<input name="eid" type="hidden" value="763" />
<input name="__maineid" type="hidden" value="763" />
<input name="_cw_edited_fields:763" type="hidden"

value="concerns-subject,done_in-subject,priority-subject,type-subject,title-
→˓subject,description-subject,__type,_cw_generic_field" />

...
</fieldset>
<iframe width="0px" height="0px" name="eformframe" id="eformframe" src="javascript:␣

→˓void(0);"></iframe>
</form>

</div>

The main fieldset encloses a set of hidden fields containing various metadata, that will be used by the edit controller
to process it back correctly.

The freezeFormButtons(. . .) javascript callback defined on the onlick event of the form element prevents accidental
multiple clicks in a row.

The action of the form is mapped to the validateform controller (situated in cubicweb.web.views.
basecontrollers).

A full explanation of the validation loop is given in The form validation process.

The attributes section

We can have a look at some of the inner nodes of the form. Some fields are omitted as they are redundant for our
purposes.

<fieldset class="default">
<table class="attributeForm">
<tr class="title_subject_row">

<th class="labelCol"><label class="required" for="title-subject:763">title</label>
→˓</th>

<td>
<input id="title-subject:763" maxlength="128" name="title-subject:763" size="45"

type="text" value="let us write more doc" />
</td>

(continues on next page)

244 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

</tr>
... (description field omitted) ...
<tr class="priority_subject_row">

<th class="labelCol"><label class="required" for="priority-subject:763">priority</
→˓label></th>

<td>
<select id="priority-subject:763" name="priority-subject:763" size="1">

<option value="important">important</option>
<option selected="selected" value="normal">normal</option>
<option value="minor">minor</option>

</select>
<div class="helper">importance</div>

</td>
</tr>
... (type field omitted) ...
<tr class="concerns_subject_row">
<th class="labelCol"><label class="required" for="concerns-subject:763">concerns</

→˓label></th>
<td>

<select id="concerns-subject:763" name="concerns-subject:763" size="1">
<option selected="selected" value="760">Foo</option>

</select>
</td>

</tr>
<tr class="done_in_subject_row">
<th class="labelCol"><label for="done_in-subject:763">done in</label></th>
<td>

<select id="done_in-subject:763" name="done_in-subject:763" size="1">
<option value="__cubicweb_internal_field__"></option>
<option selected="selected" value="761">Foo 0.1.0</option>
<option value="762">Foo 0.2.0</option>

</select>
<div class="helper">version in which this ticket will be / has been done</div>

</td>
</tr>

</table>
</fieldset>

Note that the whole form layout has been computed by the form renderer. It is the renderer which produces the table
structure. Otherwise, the fields html structure is emitted by their associated widget.

While it is called the attributes section of the form, it actually contains attributes and mandatory relations. For each
field, we observe:

• a dedicated row with a specific class, such as title_subject_row (responsability of the form renderer)

• an html widget (input, select, . . .) with:

– an id built from the rtype-role:eid pattern

– a name built from the same pattern

– possible values or preselected options

6.10. Edition control 245

Cubicweb Documentation, Release 3.38.10

The relations section

<fieldset class="This ticket :">
<legend>This ticket :</legend>
<table class="attributeForm">
<tr class="_cw_generic_field_None_row">

<td colspan="2">
<table id="relatedEntities">
<tr><th> </th><td> </td></tr>
<tr id="relationSelectorRow_763" class="separator">
<th class="labelCol">
<select id="relationSelector_763"

onchange="javascript:showMatchingSelect(this.options[this.
→˓selectedIndex].value,763);">

<option value="">select a relation</option>
<option value="appeared_in_subject">appeared in</option>
<option value="custom_workflow_subject">custom workflow</option>
<option value="depends_on_object">dependency of</option>
<option value="depends_on_subject">depends on</option>
<option value="identical_to_subject">identical to</option>
<option value="see_also_subject">see also</option>

</select>
</th>
<td id="unrelatedDivs_763"></td>

</tr>
</table>

</td>
</tr>

</table>
</fieldset>

The optional relations are grouped into a drop-down combo box. Selection of an item triggers a javascript function
which will:

• show already related entities in the div of id relatedentities using a two-colown layout, with an action to allow
deletion of individual relations (there are none in this example)

• provide a relation selector in the div of id relationSelector_EID to allow the user to set up relations and trigger
dynamic action on the last div

• fill the div of id unrelatedDivs_EID with a dynamically computed selection widget allowing direct selection of
an unrelated (but relatable) entity or a switch towards the search mode of CubicWeb which allows full browsing
and selection of an entity using a dedicated action situated in the left column boxes.

The buttons zone

Finally comes the buttons zone.

<table width="100%">
<tbody>

<tr>
<td align="center">
<button class="validateButton" type="submit" value="validate">

(continues on next page)

246 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

<img alt="OK_ICON" src="http://myapp/datafd8b5d92771209ede1018a8d5da46a37/ok.
→˓png" />

validate
</button>

</td>
<td style="align: right; width: 50%;">
<button class="validateButton"

onclick="postForm('__action_apply', 'button_apply', '
→˓entityForm')"

type="button" value="apply">
<img alt="APPLY_ICON" src="http://myapp/datafd8b5d92771209ede1018a8d5da46a37/

→˓plus.png" />
apply

</button>
<button class="validateButton"

onclick="postForm('__action_cancel', 'button_cancel', &
→˓#39;entityForm')"

type="button" value="cancel">
<img alt="CANCEL_ICON" src="http://myapp/datafd8b5d92771209ede1018a8d5da46a37/

→˓cancel.png" />
cancel

</button>
</td>

</tr>
</tbody>

</table>

The most notable artifacts here are the postForm(...) calls defined on click events on these buttons. This function
basically submits the form.

6.10.3 The form validation process

Validation loop

On form submission, the form.action is invoked. Basically, the validateform controller is called and its output lands
in the specified target, an invisible <iframe> at the end of the form.

Hence, the main page is not replaced, only the iframe contents. The validateform controller only outputs a tiny
javascript fragment which is then immediately executed.

<iframe width="0px" height="0px" name="eformframe" id="eformframe" src="javascript:␣
→˓void(0);">
<script type="text/javascript">
window.parent.handleFormValidationResponse('entityForm', null, null,

[false, [2164, {"name-subject": "required␣
→˓field"}], null],

null);
</script>

</iframe>

The window.parent part ensures the javascript function is called on the right context (that is: the form element). We
will describe its parameters:

6.10. Edition control 247

Cubicweb Documentation, Release 3.38.10

• first comes the form id (entityForm)

• then two optional callbacks for the success and failure case

• an array containing:

– a boolean which indicates status (success or failure), and then, on error:

∗ an array structured as [eid, {'rtype-role': 'error msg'}, ...]

– on success:

∗ a url (string) representing the next thing to jump to

Given the array structure described above, it is quite simple to manipulate the DOM to show the errors at appropriate
places.

Explanation

This mecanism may seem a bit overcomplicated but we have to deal with two realities:

• in the (strict) XHTML world, there are no iframes (hence the dynamic inclusion, tolerated by Firefox)

• no (or not all) browser(s) support file input field handling through ajax.

6.10.4 The edit controller

It can be found in (cubicweb.web.views.editcontroller). This controller processes data received from an html
form to create or update entities.

Edition handling

The parameters related to entities to edit are specified as follows (first seen in The attributes section):

<rtype-role>:<entity eid>

where entity eid could be a letter in case of an entity to create. We name those parameters as qualified.

• Retrieval of entities to edit is done by using the forms parameters eid and __type

• For all the attributes and the relations of an entity to edit (attributes and relations are handled a bit differently but
these details are not much relevant here) :

– using the rtype, role and __type information, fetch an appropriate field instance

– check if the field has been modified (if not, proceed to the next relation)

– build an rql expression to update the entity

At the end, all rql expressions are executed.

• For each entity to edit:

– if a qualified parameter __linkto is specified, its value has to be a string (or a list of strings)
such as:

<relation type>:<eids>:<target>

where <target> is either subject or object and each eid could be separated from the others by
a _. Target specifies if the edited entity is subject or object of the relation and each relation
specified will be inserted.

248 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

– if a qualified parameter __clone_eid is specified for an entity, the relations of the specified
entity passed as value of this parameter are copied on the edited entity.

– if a qualified parameter __delete is specified, its value must be a string or a list of string such
as follows:

<subjects eids>:<relation type>:<objects eids>

where each eid subject or object can be seperated from the other by _. Each specified relation
will be deleted.

• If no entity is edited but the form contains the parameters __linkto and eid, this one is interpreted by using the
value specified for eid to designate the entity on which to add the relations.

Note:
• if the parameter __action_delete is found, all the entities specified as to be edited will be deleted.

• if the parameter __action_cancel is found, no action is completed.

• if the parameter __action_apply is found, the editing is applied normally but the redirection is done on the form
(see Redirection control).

• if no entity is found to be edited and if there is no parameter __action_delete, __action_cancel, __linkto, __delete
or __insert, an error is raised.

• using the parameter __message in the form will allow to use its value as a message to provide the user once the
editing is completed.

Redirection control

Once editing is completed, there is still an issue left: where should we go now? If nothing is specified, the controller
will do his job but it does not mean we will be happy with the result. We can control that by using the following
parameters:

• __redirectpath: path of the URL (relative to the root URL of the site, no form parameters

• __redirectparams: forms parameters to add to the path

• __redirectrql: redirection RQL request

• __redirectvid: redirection view identifier

• __errorurl: initial form URL, used for redirecting in case a validation error is raised during editing. If this one
is not specified, an error page is displayed instead of going back to the form (which is, if necessary, responsible
for displaying the errors)

• __form_id: initial view form identifier, used if __action_apply is found

In general we use either __redirectpath and __redirectparams or __redirectrql and __redirectvid.

6.10. Edition control 249

Cubicweb Documentation, Release 3.38.10

6.10.5 Examples

(Automatic) Entity form

Looking at some cubes available on the cubicweb forge we find some with form manipulation. The following example
comes from the the conference cube. It extends the change state form for the case where a Talk entity is getting into
submitted state. The goal is to select reviewers for the submitted talk.

from cubicweb.web import formfields as ff, formwidgets as fwdgs
class SendToReviewerStatusChangeView(ChangeStateFormView):

__select__ = (ChangeStateFormView.__select__ &
is_instance('Talk') &
rql_condition('X in_state S, S name "submitted"'))

def get_form(self, entity, transition, **kwargs):
form = super(SendToReviewerStatusChangeView, self).get_form(entity, transition,␣

→˓**kwargs)
relation = ff.RelationField(name='reviews', role='object',

eidparam=True,
label=_('select reviewers'),
widget=fwdgs.Select(multiple=True))

form.append_field(relation)
return form

Simple extension of a form can be done from within the FormView wrapping the form. FormView instances have a
handy get_form method that returns the form to be rendered. Here we add a RelationField to the base state change
form.

One notable point is the eidparam argument: it tells both the field and the edit controller that the field is linked
to a specific entity.

It is hence entirely possible to add ad-hoc fields that will be processed by some specialized instance of the edit controller.

Ad-hoc fields form

We want to define a form doing something else than editing an entity. The idea is to propose a form to send an email to
entities in a resultset which implements IEmailable. Let’s take a simplified version of what you’ll find in cubicweb.
web.views.massmailing.

Here is the source code:

def sender_value(form, field):
return '%s <%s>' % (form._cw.user.dc_title(), form._cw.user.get_email())

def recipient_choices(form, field):
return [(e.get_email(), e.eid)

for e in form.cw_rset.entities()
if e.get_email()]

def recipient_value(form, field):
return [e.eid for e in form.cw_rset.entities()

if e.get_email()]

class MassMailingForm(forms.FieldsForm):
(continues on next page)

250 Chapter 6. Web Frontend Development

https://forge.extranet.logilab.fr/cubicweb/cubicweb
https://forge.extranet.logilab.fr/cubicweb/cubes/conference

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

__regid__ = 'massmailing'

needs_js = ('cubicweb.widgets.js',)
domid = 'sendmail'
action = 'sendmail'

sender = ff.StringField(widget=TextInput({'disabled': 'disabled'}),
label=_('From:'),
value=sender_value)

recipient = ff.StringField(widget=CheckBox(),
label=_('Recipients:'),
choices=recipient_choices,
value=recipients_value)

subject = ff.StringField(label=_('Subject:'), max_length=256)

mailbody = ff.StringField(widget=AjaxWidget(wdgtype='TemplateTextField',
inputid='mailbody'))

form_buttons = [ImgButton('sendbutton', "javascript: $('#sendmail').submit()",
_('send email'), 'SEND_EMAIL_ICON'),

ImgButton('cancelbutton', "javascript: history.back()",
stdmsgs.BUTTON_CANCEL, 'CANCEL_EMAIL_ICON')]

Let’s detail what’s going on up there. Our form will hold four fields:

• a sender field, which is disabled and will simply contains the user’s name and email

• a recipients field, which will be displayed as a list of users in the context result set with checkboxes so user
can still choose who will receive his mailing by checking or not the checkboxes. By default all of them will be
checked since field’s value return a list containing same eids as those returned by the vocabulary function.

• a subject field, limited to 256 characters (hence we know a TextInput will be used, as explained in
StringField)

• a mailbody field. This field use an ajax widget, defined in cubicweb.widgets.js, and whose definition won’t be
shown here. Notice though that we tell this form need this javascript file by using needs_js

Last but not least, we add two buttons control: one to post the form using javascript ($(‘#sendmail’) being the jQuery
call to get the element with DOM id set to ‘sendmail’, which is our form DOM id as specified by its domid attribute),
another to cancel the form which will go back to the previous page using another javascript call. Also we specify an
image to use as button icon as a resource identifier (see Step 1: tired of the default look?) given as last argument to
cubicweb.web.formwidgets.ImgButton.

To see this form, we still have to wrap it in a view. This is pretty simple:

class MassMailingFormView(form.FormViewMixIn, EntityView):
__regid__ = 'massmailing'
__select__ = is_instance(IEmailable) & authenticated_user()

def call(self):
form = self._cw.vreg['forms'].select('massmailing', self._cw,

rset=self.cw_rset)
form.render(w=self.w)

6.10. Edition control 251

Cubicweb Documentation, Release 3.38.10

As you see, we simply define a view with proper selector so it only apply to a result set containing IEmailable entities,
and so that only users in the managers or users group can use it. Then in the call() method for this view we simply
select the above form and call its .render() method with our output stream as argument.

When this form is submitted, a controller with id ‘sendmail’ will be called (as specified using action). This controller
will be responsible to actually send the mail to specified recipients.

Here is what it looks like:

class SendMailController(Controller):
__regid__ = 'sendmail'
__select__ = (authenticated_user() &

match_form_params('recipient', 'mailbody', 'subject'))

def publish(self, rset=None):
body = self._cw.form['mailbody']
subject = self._cw.form['subject']
eids = self._cw.form['recipient']
eids may be a string if only one recipient was specified
if isinstance(eids, basestring):

rset = self._cw.execute('Any X WHERE X eid %(x)s', {'x': eids})
else:

rset = self._cw.execute('Any X WHERE X eid in (%s)' % (','.join(eids)))
recipients = list(rset.entities())
msg = format_mail({'email' : self._cw.user.get_email(),

'name' : self._cw.user.dc_title()},
recipients, body, subject)

if not self._cw.vreg.config.sendmails([(msg, recipients)]):
msg = self._cw._('could not connect to the SMTP server')

else:
msg = self._cw._('emails successfully sent')

raise Redirect(self._cw.build_url(__message=msg))

The entry point of a controller is the publish method. In that case we simply get back post values in request’s
form attribute, get user instances according to eids found in the ‘recipient’ form value, and send email after calling
format_mail() to get a proper email message. If we can’t send email or if we successfully sent email, we redirect to
the index page with proper message to inform the user.

Also notice that our controller has a selector that deny access to it to anonymous users (we don’t want our instance to
be used as a spam relay), but also checks if the expected parameters are specified in forms. That avoids later defensive
programming (though it’s not enough to handle all possible error cases).

To conclude our example, suppose we wish a different form layout and that existent renderers are not satisfying (we
would check that first of course :). We would then have to define our own renderer:

class MassMailingFormRenderer(formrenderers.FormRenderer):
__regid__ = 'massmailing'

def _render_fields(self, fields, w, form):
w(u'<table class="headersform">')
for field in fields:

if field.name == 'mailbody':
w(u'</table>')
w(u'<div id="toolbar">')
w(u'')
for button in form.form_buttons:

(continues on next page)

252 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

w(u'%s' % button.render(form))
w(u'')
w(u'</div>')
w(u'<div>')
w(field.render(form, self))
w(u'</div>')

else:
w(u'<tr>')
w(u'<td class="hlabel">%s</td>' %
self.render_label(form, field))

w(u'<td class="hvalue">')
w(field.render(form, self))
w(u'</td></tr>')

def render_buttons(self, w, form):
pass

We simply override the _render_fields and render_buttons method of the base form renderer to arrange fields as we
desire it: here we’ll have first a two columns table with label and value of the sender, recipients and subject field (form
order respected), then form controls, then a div containing the textarea for the email’s content.

To bind this renderer to our form, we should add to our form definition above:

form_renderer_id = 'massmailing'

6.11 The facets system

Facets allow to restrict searches according to some user friendly criterias. CubicWeb has a builtin facet system to define
restrictions filters really as easily as possible.

Here is an exemple of the facets rendering picked from our http://www.cubicweb.org web site:

6.11. The facets system 253

http://en.wikipedia.org/wiki/Faceted_browser
http://www.cubicweb.org/blogentry/154152
http://www.cubicweb.org

Cubicweb Documentation, Release 3.38.10

254 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

Facets will appear on each page presenting more than one entity that may be filtered according to some known criteria.

6.11.1 Base classes for facets

6.12 Internationalization

Cubicweb fully supports the internalization of its content and interface.

Cubicweb’s interface internationalization is based on the translation project GNU gettext.

Cubicweb’ internalization involves two steps:

• in your Python code and cubicweb-tal templates : mark translatable strings

• in your instance : handle the translation catalog, edit translations

6.12.1 String internationalization

User defined string

In the Python code and cubicweb-tal templates translatable strings can be marked in one of the following ways :

• by using the built-in function _:

class PrimaryView(EntityView):
"""the full view of an non final entity"""
__regid__ = 'primary'
title = _('primary')

OR

• by using the equivalent request’s method:

class NoResultView(View):
"""default view when no result has been found"""
__regid__ = 'noresult'

def call(self, **kwargs):
self.w(u'<div class="searchMessage">%s</div>\n'

% self._cw._('No result matching query'))

The goal of the built-in function _ is only to mark the translatable strings, it will only return the string to translate
itself, but not its translation (it’s actually another name for the unicode builtin).

In the other hand the request’s method self._cw._ is also meant to retrieve the proper translation of translation strings
in the requested language.

Finally you can also use the __ (two underscores) attribute of request object to get a translation for a string which should
not itself added to the catalog, usually in case where the actual msgid is created by string interpolation

self._cw.__('This %s' % etype)

In this example ._cw.__ is used instead of ._cw._ so we don’t have ‘This %s’ in messages catalogs.

Translations in cubicweb-tal template can also be done with TAL tags i18n:content and i18n:replace.

6.12. Internationalization 255

https://www.gnu.org/software/gettext/

Cubicweb Documentation, Release 3.38.10

If you need to mark other messages as translatable, you can create a file named i18n/static-messages.pot, see for example
Specialize translation for an application cube.

You could put there messages not found in the python sources or overrides some messages that are in cubes used in the
dependencies.

Generated string

We do not need to mark the translation strings of entities/relations used by a particular instance’s schema as they are
generated automatically. String for various actions are also generated.

For exemple the following schema:

class EntityA(EntityType):
relation_a2b = SubjectRelation('EntityB')

class EntityB(EntityType):
pass

May generate the following message

add EntityA relation_a2b EntityB subject

This message will be used in views of EntityA for creation of a new EntityB with a preset relation relation_a2b
between the current EntityA and the new EntityB. The opposite message

add EntityA relation_a2b EntityB object

Is used for similar creation of an EntityA from a view of EntityB. The title of they respective creation form will be

creating EntityB (EntityA %(linkto)s relation_a2b EntityB)

creating EntityA (EntityA relation_a2b %(linkto)s EntityA)

In the translated string you can use %(linkto)s for reference to the source entity.

6.12.2 Handling the translation catalog

Once the internationalization is done in your code, you need to populate and update the translation catalog. Cubicweb
provides the following commands for this purpose:

• i18ncubicweb updates Cubicweb framework’s translation catalogs. Unless you actually work on the framework
itself, you don’t need to use this command.

• i18ncube updates the translation catalogs of one particular cube (or of all cubes). After this command is executed
you must update the translation files .po in the “i18n” directory of your cube. This command will of course not
remove existing translations still in use. It will mark unused translation but not remove them.

• i18ninstance recompiles the translation catalogs of one particular instance (or of all instances) after the trans-
lation catalogs of its cubes have been updated. This command is automatically called every time you create or
update your instance. The compiled catalogs (.mo) are stored in the i18n/<lang>/LC_MESSAGES of instance
where lang is the language identifier (‘en’ or ‘fr’ for exemple).

256 Chapter 6. Web Frontend Development

Cubicweb Documentation, Release 3.38.10

Example

You have added and/or modified some translation strings in your cube (after creating a new view or modifying the
cube’s schema for exemple). To update the translation catalogs you need to do:

1. cubicweb-ctl i18ncube <cube>

2. Edit the <cube>/i18n/xxx.po files and add missing translations (those with an empty msgstr)

3. hg ci -m “updated i18n catalogs”

4. cubicweb-ctl i18ninstance <myinstance>

6.12.3 Customizing the messages extraction process

The messages extraction performed by the i18ncommand collects messages from a few different sources:

• the schema and application definition (entity names, docstrings, help messages, uicfg),

• the source files:

– i18n:content or i18n:replace directives from TAL files (with .pt extension),

– strings prefixed by an underscore (_) in python files,

– strings with double quotes prefixed by an underscore in javascript files.

The source files are collected by walking through the cube directory, but ignoring a few directories like .hg, .tox,
test or node_modules.

If you need to customize this behaviour in your cube, you have to extend the cubicweb.devtools.devctl.
I18nCubeMessageExtractor. The example below will collect strings from jinja2 files and ignore the static
directory during the messages collection phase:

mymodule.py
from cubicweb.devtools import devctl

class MyMessageExtractor(devctl.I18nCubeMessageExtractor):

blacklist = devctl.I18nCubeMessageExtractor | {'static'}
formats = devctl.I18nCubeMessageExtractor.formats + ['jinja2']

def collect_jinja2(self):
return self.find('.jinja2')

def extract_jinja2(self, files):
return self._xgettext(files, output='jinja.pot',

extraopts='-L python --from-code=utf-8')

Then, you’ll have to register it with a cubicweb.i18ncube entry point in your cube’s setup.py:

setup(
...
entry_points={

...
'cubicweb.i18ncube': [

'mycube=cubicweb_mycube.mymodule:MyMessageExtractor',
],

(continues on next page)

6.12. Internationalization 257

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

},
...

)

6.12.4 Editing po files

Using a PO aware editor

Many tools exist to help maintain .po (PO) files. Common editors or development environment provides modes for
these. One can also find dedicated PO files editor, such as poedit.

While usage of such a tool is commendable, PO files are perfectly editable with a (unicode aware) plain text editor. It
is also useful to know their structure for troubleshooting purposes.

Structure of a PO file

In this section, we selectively quote passages of the GNU gettext manual chapter on PO files, available there:

https://www.gnu.org/software/hello/manual/gettext/PO-Files.html

One PO file entry has the following schematic structure:

white-space
translator-comments
#. extracted-comments
#: reference...
#, flag...
#| msgid previous-untranslated-string
msgid untranslated-string
msgstr translated-string

A simple entry can look like this:

#: lib/error.c:116
msgid "Unknown system error"
msgstr "Error desconegut del sistema"

It is also possible to have entries with a context specifier. They look like this:

white-space
translator-comments
#. extracted-comments
#: reference...
#, flag...
#| msgctxt previous-context
#| msgid previous-untranslated-string
msgctxt context
msgid untranslated-string
msgstr translated-string

258 Chapter 6. Web Frontend Development

http://www.poedit.net/
https://www.gnu.org/software/gettext/

Cubicweb Documentation, Release 3.38.10

The context serves to disambiguate messages with the same untranslated-string. It is possible to have several entries
with the same untranslated-string in a PO file, provided that they each have a different context. Note that an empty
context string and an absent msgctxt line do not mean the same thing.

Contexts and CubicWeb

CubicWeb PO files have both non-contextual and contextual msgids.

Contextual entries are automatically used in some cases. For instance, entity.dc_type(), eschema.display_name(req) or
display_name(etype, req, form, context) methods/function calls will use them.

It is also possible to explicitly use a context with _cw.pgettext(context, msgid).

Specialize translation for an application cube

Every cube has its own translation files. For a specific application cube it can be useful to specialize translations of
other cubes. You can either mark those strings for translation using _ in the python code, or add a static-messages.pot
file into the i18n directory. This file looks like:

msgid ""
msgstr ""
"PO-Revision-Date: YEAR-MO-DA HO:MI +ZONE\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=UTF-8\n"
"Content-Transfer-Encoding: 8bit\n"
"Generated-By: pygettext.py 1.5\n"
"Plural-Forms: nplurals=2; plural=(n > 1);\n"

msgig "expression to be translated"
msgstr ""

Doing this, expression to be translated will be taken into account by the i18ncube command and additional
messages will then appear in .po files of the cube.

6.13 The property mecanism

6.13.1 Property API

6.13.2 Registering and using your own property

6.14 HTTP cache management

6.14.1 Cache policies

class cubicweb.web.httpcache.NoHTTPCacheManager(view)
default cache manager: set no-cache cache control policy

class cubicweb.web.httpcache.MaxAgeHTTPCacheManager(view)
max-age cache manager: set max-age cache control policy, with max-age specified with the cache_max_age
attribute of the view

6.13. The property mecanism 259

Cubicweb Documentation, Release 3.38.10

class cubicweb.web.httpcache.EtagHTTPCacheManager(view)
etag based cache manager for startup views

• etag is generated using the view name and the user’s groups

• set policy to ‘must-revalidate’ and expires to the current time to force revalidation on each request

class cubicweb.web.httpcache.EntityHTTPCacheManager(view)
etag based cache manager for view displaying a single entity

• etag is generated using entity’s eid, the view name and the user’s groups

• get last modified time from the entity definition (this may not be the entity’s modification time since a view
may include some related entities with a modification time to consider) using the last_modified method

6.14.2 Exception

6.14.3 Helper functions

6.15 Locate resources

WebConfiguration.locate_resource(rid)
return the (directory, filename) where the given resource may be found

WebConfiguration.locate_doc_file(fname)
return the directory where the given resource may be found

WebConfiguration.locate_all_files(rid, rdirectory='wdoc')
return all files corresponding to the given resource

6.16 Static files handling

WebConfiguration.static_directory

WebConfiguration.static_file_exists(rpath)

WebConfiguration.static_file_open(rpath, mode='wb')

WebConfiguration.static_file_add(rpath, data)

WebConfiguration.static_file_del(rpath)

260 Chapter 6. Web Frontend Development

CHAPTER

SEVEN

PYRAMID

cubicweb.pyramid provides a way to bind a CubicWeb data repository to a Pyramid WSGI web application.

It can be used in two different ways:

• Through the pyramid command or through cubicweb.pyramid.wsgi_application()WSGI application fac-
tory, one can run an all-in-one CubicWeb instance with the web part served by a Pyramid application. This
is referred to as the backwards compatible mode.

• Through the pyramid configuration type, one can setup a CubicWeb instance which repository can be used from
within a Pyramid application. Such an instance may be launched through pserve or any WSGI server as would
any plain Pyramid application.

7.1 Quick start

7.1.1 Prerequites

Install the pyramid flavour of CubicWeb (here with pip, possibly in a virtualenv):

pip install cubicweb

7.1.2 Instance creation and running

In backwards compatible mode

In this mode, you can simply create an instance of kind all-in-one with the cubicweb-ctl create command.
You’ll then need to add a pyramid.ini file in your instance directory, see Pyramid Settings file for details about the
content of this file.

Start the instance with the ‘pyramid’ command instead of ‘start’:

cubicweb-ctl pyramid --debug myinstance

261

Cubicweb Documentation, Release 3.38.10

Without backwards compatibility

In this mode, you can create an instance of kind pyramid as follow:

cubicweb-ctl create -c pyramid <cube_name> <instance_name>

This will bootstrap a development.ini file typical of a Pyramid application in the instance’s directory. The new
instance may then be launched by any WSGI server, for instance with pserve:

pserve etc/cubicweb.d/<instance_name>/development.ini

In a pyramid application

• Create a pyramid application

• Include cubicweb.pyramid:

def includeme(config):
...
config.include('cubicweb.pyramid')
...

• Configure the instance name (in the .ini file):

cubicweb.instance = myinstance

• Configure the base-url in all-in-one.conf to match the ones of the pyramid configuration (this is a temporary
limitation).

7.2 The ‘pyramid’ command

The ‘pyramid’ command is a replacement for the ‘start’ command of cubicweb-ctl tool. It provides the same options
and a few other ones.

7.2.1 Options

--no-daemon

Run the server in the foreground.

--debug-mode

Activate the repository debug mode (logs in the console and the debug toolbar). Implies --no-daemon.

Also force the following pyramid options:

pyramid.debug_authorization = yes
pyramid.debug_notfound = yes
pyramid.debug_routematch = yes
pyramid.reload_templates = yes

-D, --debug

Equals to --debug-mode --no-daemon --reload

262 Chapter 7. Pyramid

 http://docs.pylonsproject.org/projects/pyramid/en/latest/pscripts/pserve.html

Cubicweb Documentation, Release 3.38.10

--reload

Restart the server if any source file is changed

--reload-interval=RELOAD_INTERVAL

Interval, in seconds, between file modifications checks [current: 1]

-l <log level>, --loglevel=<log level>

Set the loglevel. debug if -D is set, error otherwise

--profile-output=PROFILE_OUTPUT

Profiling output file (default: “program.prof”)

--profile-dump-every=N

Dump profile stats to ouput every N requests (default: 100)

7.3 Settings

7.3.1 Cubicweb Settings

Pyramid CubicWeb will not make use of the configuration entries found in the cubicweb configuration (a.k.a. all-in-
one.conf) for any pyramid related configuration value.

7.3.2 Pyramid Settings file

In backwards compatibility mode, Pyramid settings will be looked for in a pyramid.ini file in the instance home
directory (where the all-in-one.conf file is), its [main] section will be read and used as the settings of the
pyramid Configurator.

This configuration file is almost the same as the one read by pserve, which allow to easily add any pyramid extension
and configure it.

A typical pyramid.ini file is:

[main]
pyramid.includes =

pyramid_redis_sessions

cubicweb.defaults = no
cubicweb.includes =

cubicweb.pyramid.auth
cubicweb.pyramid.login

cubicweb.profile = no

redis.sessions.secret = your_cookie_signing_secret
redis.sessions.timeout = 1200

redis.sessions.host = mywheezy

Without backwards compatibility a standard development.ini file can be used with any useful CubicWeb-specific
settings added.

7.3. Settings 263

Cubicweb Documentation, Release 3.38.10

7.3.3 Pyramid CubicWeb configuration entries

The Pyramid CubicWeb specific configuration entries are:

cubicweb.instance (string)

A CubicWeb instance name. Useful when the application is not run by The ‘pyramid’ command.

cubicweb.debug (bool)

Enables the cubicweb debugmode. Works only if the instance is setup by cubicweb.instance.

Unlike when the debugmode is set by the cubicweb-ctl pyramid --debug-mode command, the pyramid
debug options are untouched.

cubicweb.includes (list)

Same as pyramid.includes, but the includes are done after the cubicweb specific registry entries are initialized.

Useful to include extensions that requires these entries.

cubicweb.bwcompat (bool)

(True) Enable/disable backward compatibility. This only applies to “all-in-one” configuration type.

See cubicweb.pyramid.bwcompat.

cubicweb.bwcompat.errorhandler (bool)

(True) Enable/disable the backward compatibility error handler. Set to ‘no’ if you need to define your own error
handlers.

cubicweb.defaults (bool)

(True) Enable/disable defaults. See cubicweb.pyramid.defaults.

cubicweb.auth.update_login_time (bool)

(True) Add a cubicweb.pyramid.auth.UpdateLoginTimeAuthenticationPolicy policy, that update the
CWUser.login_time attribute when a user login.

cubicweb.auth.authtkt (bool)

(True) Enables the 2 cookie-base auth policies, which activate/deactivate depending on the persistent argument
passed to remember.

The default login views set persistent to True if a __setauthcookie parameters is passed to them, and evals to True
in pyramid.settings.asbool().

The configuration values of the policies are arguments for pyramid.authentication.
AuthTktAuthenticationPolicy.

The first policy handles session authentication. It doesn’t get activated if remember() is called with persis-
tent=False:

cubicweb.auth.authtkt.session.cookie_name (str)

(‘auth_tkt’) The cookie name. Must be different from the persistent authentication cookie name.

cubicweb.auth.authtkt.session.samesite (str)

(‘auth_tkt’) Allows you to declare if your cookie should be restricted to a first-party or same-site context.
See here for more information.

cubicweb.auth.authtkt.session.timeout (int)

(1200) Cookie timeout.

264 Chapter 7. Pyramid

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite

Cubicweb Documentation, Release 3.38.10

cubicweb.auth.authtkt.session.reissue_time (int)

(120) Reissue time.

The second policy handles persistent authentication. It doesn’t get activated if remember() is called with persis-
tent=True:

cubicweb.auth.authtkt.persistent.cookie_name (str)

(‘auth_tkt’) The cookie name. Must be different from the session authentication cookie name.

cubicweb.auth.authtkt.persistent.samesite (str)

(‘auth_tkt’) Allows you to declare if your cookie should be restricted to a first-party or same-site context.
See here for more information.

cubicweb.auth.authtkt.persistent.max_age (int)

(30 days) Max age in seconds.

cubicweb.auth.authtkt.persistent.reissue_time (int)

(1 day) Reissue time in seconds.

Both policies set the secure flag to True by default, meaning that cookies will only be sent back over a
secure connection (see Authentication Policies documentation for details). This can be configured through
cubicweb.auth.authtkt.persistent.secure and cubicweb.auth.authtkt.session.secure config-
uration options.

cubicweb.auth.groups_principals (bool)

(True) Setup a callback on the authentication stack that inject the user groups in the principals.

7.4 Authentication

7.4.1 Overview

A default authentication stack is provided by the cubicweb.pyramid.auth module, which is included by cubicweb.
pyramid.default.

The authentication stack is built around pyramid_multiauth, and provides a few default policies that reproduce the
default cubicweb behavior.

Note: Note that this module only provides an authentication policy, not the views that handle the login form. See
cubicweb.pyramid.login

7.4.2 Customize

The default policies can be individually deactivated, as well as the default authentication callback that returns the
current user groups as principals.

The following settings can be set to False:

• cubicweb.auth.update_login_time. Activate the policy that update the user login_time when remember is
called.

• cubicweb.auth.authtkt and all its subvalues.

• cubicweb.auth.groups_principals

7.4. Authentication 265

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie/SameSite
 http://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html
https://github.com/mozilla-services/pyramid_multiauth

Cubicweb Documentation, Release 3.38.10

Additionnal policies can be added by accessing the MultiAuthenticationPolicy instance in the registry:

mypolicy = SomePolicy()
authpolicy = config.registry['cubicweb.authpolicy']
authpolicy._policies.append(mypolicy)

7.5 The pyramid debug toolbar

The pyramid webserver comes with an integrated debug toolbar that offers a lot of information to ease development.
To ease the development process in CubicWeb a series of custom debug panels have been developped especially for
that purpose.

To use the pyramid debug toolbar in CubicWeb, you need to:

• install it either by doing a pip install pyramid_debugtoolbar or following the official installation instructions

• launch the pyramid command adding the -t/–toolbar argument to enable it like so: cubicweb-ctl pyramid
my_instance -t (you probably want to add -D to activate the debug mode during development)

• navigate to the website and click on the icon on the right like on this screenshot:

images/debug_toolbar_icon.png

And you’ll have access to the debug toolbar content for this page.

7.5.1 Custom panels

A series of custom debug panels have been written to offer more useful debug information during development. Here
is the list:

General ‘CubicWeb’ Panel

Provides:

• currently selected controller for this with and uri/requests information

• current instance configuration, options that differs from default ones are in bold

• a list of useful links like on the default CW home

Screenshot:

266 Chapter 7. Pyramid

https://docs.pylonsproject.org/projects/pyramid_debugtoolbar/
https://docs.pylonsproject.org/projects/pyramid_debugtoolbar/#installation

Cubicweb Documentation, Release 3.38.10

Registry Decisions Panel

Provides:

• a list of all decisions taken in all registry during this page construction

• the arguments given to take the decision

• all the selection entities during decisions with their score

• which one has won if any

7.5. The pyramid debug toolbar 267

Cubicweb Documentation, Release 3.38.10

Registry Store

Provides:

• a listing of all the content of the different registries

• for each entity its detailed information

RQL

Provides:

• a list of all executed RQL queries during this page creation

• for each RQL query all the generated SQL queries

• detail information like the result, the args and the description of each query

• the call stack on each query to see where it has been called

268 Chapter 7. Pyramid

Cubicweb Documentation, Release 3.38.10

7.5. The pyramid debug toolbar 269

Cubicweb Documentation, Release 3.38.10

SQL

Provides:

• a list of all executed SQL queries during this page creation

• for each SQL query the RQL query that has generated it, if any (some aren’t)

• detail information like the result, the args and if the query has rollback

• the call stack on each query to see where it has been called

7.5.2 Accessing the sources of the class/functions/method listing the debug panels

A traversal of all those custom panels is the see the source code of all listing class/functions/methods. You can access
those by:

• clicking on the [source] close to the target when available

• clicking on the file path in the traceback stack

270 Chapter 7. Pyramid

Cubicweb Documentation, Release 3.38.10

You be sent to a page looking like this:

7.5.3 Contributing

All source code for the custom panels is located here and the documentation of how to write custom toolbar panels
here.

7.5. The pyramid debug toolbar 271

https://hg.logilab.org/master/cubicweb/file/tip/cubicweb/pyramid/debugtoolbar_panels.py
https://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/#adding-custom-panels
https://docs.pylonsproject.org/projects/pyramid_debugtoolbar/en/latest/#adding-custom-panels

Cubicweb Documentation, Release 3.38.10

272 Chapter 7. Pyramid

CHAPTER

EIGHT

ADDITIONAL SERVICES

In this chapter, we introduce services crossing the web - repository - administration organisation of the first parts of
the CubicWeb book. Those services can be either proper services (like the undo functionality) or mere topical cross-
sections across CubicWeb.

8.1 Undoing changes in CubicWeb

Many desktop applications offer the possibility for the user to undo its last changes : this undo feature has now been
integrated into the CubicWeb framework. This document will introduce you to the undo feature both from the end-user
and the application developer point of view.

But because a semantic web application and a common desktop application are not the same thing at all, especially as
far as undoing is concerned, we will first introduce what is the undo feature for now.

8.1.1 What’s undoing in a CubicWeb application

What is an undo feature is quite intuitive in the context of a desktop application. But it is a bit subtler in the context of
a Semantic Web application. This section introduces some of the main differences between a classical desktop and a
Semantic Web applications to keep in mind in order to state precisely what we want.

The notion transactions

A CubicWeb application acts upon an Entity-Relationship model, described by a schema. This allows to ensure some
data integrity properties. It also implies that changes are made by all-or-none groups called transactions, such that the
data integrity is preserved whether the transaction is completely applied or none of it is applied.

A transaction can thus include more actions than just those directly required by the main purpose of the user. For
example, when a user just writes a new blog entry, the underlying transaction holds several actions as illustrated below
:

• By admin on 2012/02/17 15:18 - Created Blog entry : Torototo

1. Created Blog entry : Torototo

2. Added relation : Torototo owned by admin

3. Added relation : Torototo blog entry of Undo Blog

4. Added relation : Torototo in state draft (draft)

5. Added relation : Torototo created by admin

273

Cubicweb Documentation, Release 3.38.10

Because of the very nature (all-or-none) of the transactions, the “undoable stuff” are the transactions and not the actions
!

Public and private actions within a transaction

Actually, within the transaction “Created Blog entry : Torototo”, two of those actions are said to be public and the
others are said to be private. Public here means that the public actions (1 and 3) were directly requested by the end user
; whereas private means that the other actions (2, 4, 5) were triggered “under the hood” to fulfill various requirements
for the user operation (ensuring integrity, security, . . .).

And because quite a lot of actions can be triggered by a “simple” end-user request, most of which the end-user is not
(and does not need or wish to be) aware, only the so-called public actions will appear1 in the description of the an
undoable transaction.

• By admin on 2012/02/17 15:18 - Created Blog entry : Torototo

1. Created Blog entry : Torototo

2. Added relation : Torototo blog entry of Undo Blog

But note that both public and private actions will be undone together when the transaction is undone.

(In)dependent transactions : the simple case

A CubicWeb application can be used simultaneously by different users (whereas a single user works on an given of-
fice document at a given time), so that there is not always a single history time-line in the CubicWeb case. Moreover
CubicWeb provides security through the mechanism of permissions granted to each user. This can lead to some trans-
actions not being undoable in some contexts.

In the simple case two (unprivileged) users Alice and Bob make relatively independent changes : then both Alice
and Bob can undo their changes. But in some case there is a clean dependency between Alice’s and Bob’s actions or
between actions of one of them. For example let’s suppose that :

• Alice has created a blog,

• then has published a first post inside,

• then Bob has published a second post in the same blog,

• and finally Alice has updated its post contents.

Then it is clear that Alice can undo her contents changes and Bob can undo his post creation independently. But Alice
can not undo her post creation while she has not first undone her changes. It is also clear that Bob should not have the
permissions to undo any of Alice’s transactions.

More complex dependencies between transactions

But more surprising things can quickly happen. Going back to the previous example, Alice can undo the creation of
the blog after Bob has published its post in it ! But this is possible only because the schema does not require for a
post to be in a blog. Would the blog entry of relation have been mandatory, then Alice could not have undone the blog
creation because it would have broken integrity constraint for Bob’s post.

When a user attempts to undo a transaction the system will check whether a later transaction has explicit dependency
on the would-be-undone transaction. In this case the system will not even attempt the undo operation and inform the
user.

1 The end-user Web interface could be improved to enable user to choose whether he wishes to see private actions.

274 Chapter 8. Additional Services

Cubicweb Documentation, Release 3.38.10

If no such dependency is detected the system will attempt the undo operation but it can fail, typically because of integrity
constraint violations. In such a case the undo operation is completely3 rollbacked.

8.1.2 The undo feature for CubicWeb end-users

The exposition of the undo feature to the end-user through a Web interface is still quite basic and will be improved
toward a greater usability. But it is already fully functional. For now there are two ways to access the undo feature as
long as the it has been activated in the instance configuration file with the option undo-support=yes.

Immediately after having done the change to be canceled through the undo link in the message. This allows to undo an
hastily action immediately. For example, just after having validated the creation of the blog entry A second blog entry
we get the following message, allowing to undo the creation.

At any time we can access the undo-history view accessible from the start-up page.

This view will provide inspection of the transaction and their (public) actions. Each transaction provides its own undo
link. Only the transactions the user has permissions to see and undo will be shown.

3 Meaning none of the actions in the transaction is undone. Depending upon the application, it might make sense to enable partial undo. That is
to say undo in which some actions could not be undo without preventing to undo the others actions in the transaction (as long as it does not break
schema integrity). This is not forbidden by the back-end but is deliberately not supported by the front-end (for now at least).

8.1. Undoing changes in CubicWeb 275

Cubicweb Documentation, Release 3.38.10

If the user attempts to undo a transaction which can’t be undone or whose undoing fails, then a message will explain
the situation and no partial undoing will be left behind.

This is all for the end-user side of the undo mechanism : this is quite simple indeed ! Now, in the following section,
we are going to introduce the developer side of the undo mechanism.

8.1.3 The undo feature for CubicWeb application developers

A word of warning : this section is intended for developers, already having some knowledge of what’s under CubicWeb’s
hood. If it is not yet the case, please refer to CubicWeb documentation http://docs.cubicweb.org/ .

Overview

The core of the undo mechanisms is at work in the native source, beyond the RQL. This does mean that transactions
and actions are no entities. Instead they are represented at the SQL level and exposed through the DB-API supported
by the repository Connection objects.

Once the undo feature has been activated in the instance configuration file with the option undo-support=yes, each
mutating operation (cf.2) will be recorded in some special SQL table along with its associated transaction. Transaction
are identified by a txuuid through which the functions of the DB-API handle them.

On the web side the last commited transaction txuuid is remembered in the request’s data to allow for imediate undo-
ing whereas the undo-history view relies upon the DB-API to list the accessible transactions. The actual undoing is
performed by the UndoController accessible at URL of the form www.my.host/my/instance/undo?txuuid=. . .

2 There is only five kind of elementary actions (beyond merely accessing data for reading):
• C : creating an entity

• D : deleting an entity

• U : updating an entity attributes

• A : adding a relation

• R : removing a relation

276 Chapter 8. Additional Services

http://docs.cubicweb.org/

Cubicweb Documentation, Release 3.38.10

The repository side

Please refer to the file cubicweb/server/sources/native.py and cubicweb/transaction.py for the details.

The undoing information is mainly stored in three SQL tables:

transactions Stores the txuuid, the user eid and the date-and-time of the transaction. This table is referenced by the
two others.

tx_entity_actions Stores the undo information for actions on entities.

tx_relation_actions Stores the undo information for the actions on relations.

When the undo support is activated, entries are added to those tables for each mutating operation on the data repository,
and are deleted on each transaction undoing.

Those table are accessible through the following methods of the repository Connection object :

undoable_transactions Returns a list of Transaction objects accessible to the user and according to the specified fil-
ter(s) if any.

tx_info Returns a Transaction object from a txuuid

undo_transaction Returns the list of Action object for the given txuuid.

NB: By default it only return public actions.

The web side

The exposure of the undo feature to the end-user through the Web interface relies on the DB-API introduced above.
This implies that the transactions and actions are not entities linked by relations on which the usual views can be
applied directly.

That’s why the file cubicweb/web/views/undohistory.py defines some dedicated views to access the undo information :

UndoHistoryView This is a StartupView, the one accessible from the home page of the instance which list all transac-
tions.

UndoableTransactionView This view handles the display of a single Transaction object.

UndoableActionBaseView This (abstract) base class provides private methods to build the display of actions whatever
their nature.

Undoable[Add|Remove|Create|Delete|Update]ActionView Those views all inherit from UndoableActionBaseView and
each handles a specific kind of action.

UndoableActionPredicate This predicate is used as a selector to pick the appropriate view for actions.

Apart from this main undo-history view a txuuid is stored in the request’s data last_undoable_transaction in order
to allow immediate undoing of a hastily validated operation. This is handled in cubicweb/web/application.py in the
main_publish and add_undo_link_to_msg methods for the storing and displaying respectively.

Once the undo information is accessible, typically through a txuuid in an undo URL, the actual undo operation can be
performed by the UndoController defined in cubicweb/web/views/basecontrollers.py. This controller basically extracts
the txuuid and performs a call to undo_transaction and in case of an undo-specific error, lets the top level publisher
handle it as a validation error.

8.1. Undoing changes in CubicWeb 277

Cubicweb Documentation, Release 3.38.10

8.1.4 Conclusion

The undo mechanism relies upon a low level recording of the mutating operation on the repository. Those records are
accessible through some method added to the DB-API and exposed to the end-user either through a whole history view
of through an immediate undoing link in the message box.

The undo feature is functional but the interface and configuration options are still quite reduced. One major improve-
ment would be to be able to filter with a finer grain which transactions or actions one wants to see in the undo-history
view. Another critical improvement would be to enable the undo feature on a part only of the entity-relationship schema
to avoid storing too much useless data and reduce the underlying overhead.

But both functionality are related to the strong design choice not to represent transactions and actions as entities and
relations. This has huge benefits in terms of safety and conceptual simplicity but prevents from using lots of convenient
CubicWeb features such as facets to access undo information.

Before developing further the undo feature or eventually revising this design choice, it appears that some return of
experience is strongly needed. So don’t hesitate to try the undo feature in your application and send us some feedback.

8.1.5 Notes

278 Chapter 8. Additional Services

CHAPTER

NINE

APPENDIXES

The following chapters are reference material.

9.1 Frequently Asked Questions (FAQ)

9.1.1 Generalities

Why do you use the LGPL license to prevent me from doing X ?

LGPL means that if you redistribute your application, you need to redistribute the changes you made to CubicWeb
under the LGPL licence.

Publishing a web site has nothing to do with redistributing source code according to the terms of the LGPL. A fair
amount of companies use modified LGPL code for internal use. And someone could publish a CubicWeb component
under a BSD licence for others to plug into a LGPL framework without any problem. The only thing we are trying to
prevent here is someone taking the framework and packaging it as closed source to his own clients.

Why does not CubicWeb have a template language ?

There are enough template languages out there. You can use your preferred template language if you want.

CubicWeb does not define its own templating language as this was not our goal. Based on our experience, we realized
that we could gain productivity by letting designers use design tools and developpers develop without the use of the
templating language as an intermediary that could not be anyway efficient for both parties. Python is the templating
language that we use in CubicWeb, but again, it does not prevent you from using a templating language.

Moreover, CubicWeb currently supports simpletal out of the box and it is also possible to use the cwtags library to
build html trees using the with statement with more comfort than raw strings.

Why do you think using pure python is better than using a template language ?

Python is an Object Oriented Programming language and as such it already provides a consistent and strong architecture
and syntax a templating language would not reach.

Using Python instead of a template langage for describing the user interface makes it to maintain with real func-
tions/classes/contexts without the need of learning a new dialect. By using Python, we use standard OOP techniques
and this is a key factor in a robust application.

279

http://www.owlfish.com/software/simpleTAL/
https://forge.extranet.logilab.fr/cubicweb/cubes/tag
http://www.python.org/dev/peps/pep-0343/

Cubicweb Documentation, Release 3.38.10

CubicWeb looks pretty recent. Is it stable ?

It is constantly evolving, piece by piece. The framework has evolved since 2001 and data has been migrated from one
schema to the other ever since. There is a well-defined way to handle data and schema migration.

You can see the roadmap there: https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/boards.

Why is the RQL query language looking similar to X ?

It may remind you of SQL but it is higher level than SQL, more like SPARQL. Except that SPARQL did not exist when
we started the project. With version 3.4, CubicWeb has support for SPARQL.

The RQL language is what is going to make a difference with django- like frameworks for several reasons.

1. accessing data is much easier with it. One can write complex queries with RQL that would be tedious to define
and hard to maintain using an object/filter suite of method calls.

2. it offers an abstraction layer allowing your applications to run on multiple back-ends. That means not only
various SQL backends (postgresql, sqlite, sqlserver, mysql), but also non-SQL data stores like LDAP directories
and subversion/mercurial repositories (see the vcsfile component).

Which ajax library is CubicWeb using ?

CubicWeb uses jQuery and provides a few helpers on top of that. Additionally, some jQuery plugins are provided
(some are provided in specific cubes).

9.1.2 Development

How to change the instance logo ?

The logo is managed by css. You must provide a custom css that will contain the code below:

#logo {
background-image: url("logo.jpg");

}

logo.jpg is in mycube/data directory.

How to create an anonymous user ?

This allows to browse the site without being authenticated. In the all-in-one.conf file of your instance, define the
anonymous user as follows

login of the CubicWeb user account to use for anonymous user (if you want to
allow anonymous)
anonymous-user=anon

password of the CubicWeb user account matching login
anonymous-password=anon

You also must ensure that this anon user is a registered user of the DB backend. If not, you can create through the
administation interface of your instance by adding a user with in the group guests.

280 Chapter 9. Appendixes

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/boards
http://jquery.com

Cubicweb Documentation, Release 3.38.10

Note: While creating a new instance, you can decide to allow access to anonymous user, which will automatically
execute what is decribed above.

How to format an entity date attribute ?

If your schema has an attribute of type Date or Datetime, you usually want to format it when displaying
it. First, you should define your preferred format using the site configuration panel http://appurl/view?
vid=systempropertiesform and then set ui.date and/or ui.datetime. Then in the view code, use:

entity.printable_value(date_attribute)

which will always return a string whatever the attribute’s type (so it’s recommended also for other attribute types). By
default it expects to generate HTML, so it deals with rich text formating, xml escaping. . .

How to update a database after a schema modification ?

It depends on what has been modified in the schema.

• update the permissions and properties of an entity or a relation: sync_schema_props_perms('MyEntityOrRelation').

• add an attribute: add_attribute('MyEntityType', 'myattr').

• add a relation: add_relation_definition('SubjRelation', 'MyRelation', 'ObjRelation').

I get NoSelectableObject exceptions, how do I debug selectors ?

You just need to put the appropriate context manager around view/component selection. One standard place for com-
ponents is in cubicweb/vregistry.py:

def possible_objects(self, *args, **kwargs):
"""return an iterator on possible objects in this registry for the given
context
"""
from logilab.common.registry import traced_selection
with traced_selection():

for appobjects in self.itervalues():
try:

yield self._select_best(appobjects, *args, **kwargs)
except NoSelectableObject:

continue

This will yield additional WARNINGs, like this:

2009-01-09 16:43:52 - (cubicweb.selectors) WARNING: selector one_line_rset returned 0␣
→˓for <class 'cubicweb.web.views.basecomponents.WFHistoryVComponent'>

For views, you can put this context in cubicweb/web/views/basecontrollers.py in the ViewController:

def _select_view_and_rset(self, rset):
...
try:

(continues on next page)

9.1. Frequently Asked Questions (FAQ) 281

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

from logilab.common.registry import traced_selection
with traced_selection():

view = self._cw.vreg['views'].select(vid, req, rset=rset)
except ObjectNotFound:

self.warning("the view %s could not be found", vid)
req.set_message(req._("The view %s could not be found") % vid)
vid = vid_from_rset(req, rset, self._cw.vreg.schema)
view = self._cw.vreg['views'].select(vid, req, rset=rset)

...

I get “database is locked” when executing tests

If you have “database is locked” as error when you are executing security tests, it is usually because commit or rollback
are missing before login() calls.

You can also use a context manager, to avoid such errors, as described here: Managing connections or users.

What are hooks used for ?

Hooks are executed around (actually before or after) events. The most common events are data creation, update and
deletion. They permit additional constraint checking (those not expressible at the schema level), pre and post compu-
tations depending on data movements.

As such, they are a vital part of the framework.

Other kinds of hooks, called Operations, are available for execution just before commit.

For more information, read Hooks and Operations section.

9.1.3 Configuration

How to configure a LDAP source ?

See LDAP integration.

How to import LDAP users in CubicWeb ?

Here is a useful script which enables you to import LDAP users into your CubicWeb instance by running
the following:

import os
import pwd
import sys

from logilab.database import get_connection

def getlogin():
"""avoid using os.getlogin() because of strange tty/stdin problems
(man 3 getlogin)
Another solution would be to use $LOGNAME, $USER or $USERNAME

(continues on next page)

282 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

"""
return pwd.getpwuid(os.getuid())[0]

try:
database = sys.argv[1]

except IndexError:
print 'USAGE: python ldap2system.py <database>'
sys.exit(1)

if input('update %s db ? [y/n]: ' % database).strip().lower().startswith('y'):
cnx = get_connection(user=getlogin(), database=database)
cursor = cnx.cursor()

insert = ('INSERT INTO euser (creation_date, eid, modification_date, login, '
' firstname, surname, last_login_time, upassword) '
"VALUES (%(mtime)s, %(eid)s, %(mtime)s, %(login)s, %(firstname)s, "
"%(surname)s, %(mtime)s, './fqEz5LeZnT6');")

update = "UPDATE entities SET source='system' WHERE eid=%(eid)s;"
cursor.execute("SELECT eid,type,source,extid,mtime FROM entities WHERE source!=

→˓'system'")
for eid, type, source, extid, mtime in cursor.fetchall():

if type != 'CWUser':
print "don't know what to do with entity type", type
continue

if source != 'ldapuser':
print "don't know what to do with source type", source
continue

ldapinfos = dict(x.strip().split('=') for x in extid.split(','))
login = ldapinfos['uid']
firstname = ldapinfos['uid'][0].upper()
surname = ldapinfos['uid'][1:].capitalize()
if login != 'jcuissinat':

args = dict(eid=eid, type=type, source=source, login=login,
firstname=firstname, surname=surname, mtime=mtime)

print args
cursor.execute(insert, args)
cursor.execute(update, args)

cnx.commit()
cnx.close()

9.1. Frequently Asked Questions (FAQ) 283

Cubicweb Documentation, Release 3.38.10

9.1.4 Security

How to reset the password for user joe ?

If you want to reset the admin password for myinstance, do:

$ cubicweb-ctl reset-admin-pwd myinstance

You need to generate a new encrypted password:

$ python
>>> from cubicweb.server.utils import crypt_password
>>> crypt_password('joepass')
'qHO8282QN5Utg'
>>>

and paste it in the database:

$ psql mydb
mydb=> update cw_cwuser set cw_upassword='qHO8282QN5Utg' where cw_login='joe';
UPDATE 1

if you’re running over SQL Server, you need to use the CONVERT function to convert the string to varbinary(255).
The SQL query is therefore:

update cw_cwuser set cw_upassword=CONVERT(varbinary(255), 'qHO8282QN5Utg') where cw_
→˓login='joe';

Be careful, the encryption algorithm is different on Windows and on Unix. You cannot therefore use a hash generated
on Unix to fill in a Windows database, nor the other way round.

You can prefer use a migration script similar to this shell invocation instead:

$ cubicweb-ctl shell <instance>
>>> from cubicweb import Binary
>>> from cubicweb.server.utils import crypt_password
>>> crypted = crypt_password('joepass')
>>> rset = rql('Any U WHERE U is CWUser, U login "joe"')
>>> joe = rset.get_entity(0,0)
>>> joe.cw_set(upassword=Binary(crypted))

Please, refer to the script example is provided in the misc/examples/chpasswd.py file.

The more experimented people would use RQL request directly:

>>> rql('SET X upassword %(a)s WHERE X is CWUser, X login "joe"',
... {'a': crypted})

284 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

I’ve just created a user in a group and it doesn’t work !

You are probably getting errors such as

remove {'PR': 'Project', 'C': 'CWUser'} from solutions since your_user has no read␣
→˓access to cost

This is because you have to put your user in the “users” group. The user has to be in both groups.

How is security implemented ?

The basis for security is a mapping from operations to groups or arbitrary RQL expressions. These mappings are
scoped to entities and relations.

This is an example for an Entity Type definition:

class Version(EntityType):
"""a version is defining the content of a particular project's
release"""
definition of attributes is voluntarily missing
__permissions__ = {'read': ('managers', 'users', 'guests',),

'update': ('managers', 'logilab', 'owners'),
'delete': ('managers',),
'add': ('managers', 'logilab',

ERQLExpression('X version_of PROJ, U in_group G, '
'PROJ require_permission P, '
'P name "add_version", P require_group G'),

→˓)}

The above means that permission to read a Version is granted to any user that is part of one of the groups ‘managers’,
‘users’, ‘guests’. The ‘add’ permission is granted to users in group ‘managers’ or ‘logilab’ or to users in group G, if G
is linked by a permission entity named “add_version” to the version’s project.

An example for a Relation Definition (RelationType both defines a relation type and implicitly one relation definition,
on which the permissions actually apply):

class version_of(RelationType):
"""link a version to its project. A version is necessarily linked
to one and only one project. """
some lines voluntarily missing
__permissions__ = {'read': ('managers', 'users', 'guests',),

'delete': ('managers',),
'add': ('managers', 'logilab',

RRQLExpression('O require_permission P, P name "add_
→˓version", '

'U in_group G, P require_group G'),) }

The main difference lies in the basic available operations (there is no ‘update’ operation) and the usage of an RRQL-
Expression (rql expression for a relation) instead of an ERQLExpression (rql expression for an entity).

You can find additional information in the section The security model.

9.1. Frequently Asked Questions (FAQ) 285

Cubicweb Documentation, Release 3.38.10

Is it possible to bypass security from the UI (web front) part ?

No. Only Hooks/Operations can do that.

Can PostgreSQL and CubicWeb authentication work with kerberos ?

If you have PostgreSQL set up to accept kerberos authentication, you can set the db-host, db-name and db-user pa-
rameters in the sources configuration file while leaving the password blank. It should be enough for your instance to
connect to postgresql with a kerberos ticket.

9.2 Relation Query Language (RQL)

This chapter describes the Relation Query Language syntax and its implementation in CubicWeb.

9.2.1 Introduction

Goals of RQL

The goal is to have a semantic language in order to:

• query relations in a clear syntax

• empowers access to data repository manipulation

• making attributes/relations browsing easy

As such, attributes will be regarded as cases of special relations (in terms of usage, the user should see no syntactic
difference between an attribute and a relation).

Comparison with existing languages

SQL

RQL may remind of SQL but works at a higher abstraction level (the CubicWeb framework generates SQL from RQL
to fetch data from relation databases). RQL is focused on browsing relations. The user needs only to know about the
CubicWeb data model he is querying, but not about the underlying SQL model.

Sparql

The query language most similar to RQL is SPARQL, defined by the W3C to serve for the semantic web.

286 Chapter 9. Appendixes

http://www.w3.org/TR/rdf-sparql-query/

Cubicweb Documentation, Release 3.38.10

Versa

We should look in more detail, but here are already some ideas for the moment . . . Versa is the language most similar to
what we wanted to do, but the model underlying data being RDF, there are some things such as namespaces or handling
of the RDF types which does not interest us. On the functionality level, Versa is very comprehensive including through
many functions of conversion and basic types manipulation, which we may want to look at one time or another. Finally,
the syntax is a little esoteric.

Datalog

Datalog is a prolog derived query langage which applies to relational databases. It is more expressive than RQL in
that it accepts either extensional and intensional predicates (or relations). As of now, RQL only deals with intensional
relations.

The different types of queries

Search (Any) Extract entities and attributes of entities.

Insert entities (INSERT) Insert new entities or relations in the database. It can also directly create relationships for
the newly created entities.

Update entities, create relations (SET) Update existing entities in the database, or create relations between existing
entities.

Delete entities or relationship (DELETE) Remove entities or relations existing in the database.

RQL relation expressions

RQL expressions apply to a live database defined by a Yams schema. Apart from the main type, or head, of the
expression (search, insert, etc.) the most common constituent of an RQL expression is a (set of) relation expression(s).

An RQL relation expression contains three components:

• the subject, which is an entity type

• the predicate, which is a relation definition (an arc of the schema)

• the object, which is either an attribute or a relation to another entity

Warning: A relation is always expressed in the order: subject, predicate, object.

It is important to determine if the entity type is subject or object to construct a valid expression. Inverting the
subject/object is an error since the relation cannot be found in the schema.

If one does not have access to the code, one can find the order by looking at the schema image in manager views
(the subject is located at the beginning of the arrow).

An example of two related relation expressions:

P works_for C, P name N

9.2. Relation Query Language (RQL) 287

http://wiki.xml3k.org/Versa
http://wiki.xml3k.org/Versa
http://en.wikipedia.org/wiki/Datalog
http://en.wikipedia.org/wiki/Extension_(predicate_logic)
http://en.wikipedia.org/wiki/Intensional_definition

Cubicweb Documentation, Release 3.38.10

RQL variables represent typed entities. The type of entities is either automatically inferred (by looking at the possible
relation definitions, see Relation definition) or explicitely constrained using the is meta relation.

In the example above, we barely need to look at the schema. If variable names (in the RQL expression) and relation
type names (in the schema) are expresssively designed, the human reader can infer as much as the CubicWeb querier.

The P variable is used twice but it always represent the same set of entities. Hence P works_for C and P name N
must be compatible in the sense that all the Ps (which can refer to different entity types) must accept the works_for
and name relation types. This does restrict the set of possible values of P.

Adding another relation expression:

P works_for C, P name N, C name "logilab"

This further restricts the possible values of P through an indirect constraint on the possible values of C. The RQL-level
unification happening there is translated to one (or several) joins at the database level.

Note: In CubicWeb, the term relation is often found without ambiguity instead of predicate. This predicate is also
known as the property of the triple in RDF concepts

RQL Operators

An RQL expression’s head can be completed using various operators such as ORDERBY, GROUPBY, HAVING, LIMIT etc.

RQL relation expressions can be grouped with UNION or WITH. Predicate oriented keywords such as EXISTS, OR, NOT
are available.

The complete zoo of RQL operators is described extensively in the following chapter (RQL syntax).

9.2.2 RQL syntax

Reserved keywords

AND, ASC, BEING, DELETE, DESC, DISTINCT, EXISTS, FALSE, GROUPBY,
HAVING, ILIKE, INSERT, LIKE, LIMIT, NOT, NOW, NULL, NULLSFIRST, NULLSLAST,
OFFSET, OR, ORDERBY, SET, TODAY, TRUE, UNION, WHERE, WITH

The keywords are not case sensitive. You should not use them when defining your schema, or as RQL variable names.

Case

• Variables should be all upper-cased.

• Relation should be all lower-cased and match exactly names of relations defined in the schema.

• Entity types should start with an upper cased letter and be followed by at least a lower cased latter.

288 Chapter 9. Appendixes

http://en.wikipedia.org/wiki/Unification_(computing)
http://en.wikipedia.org/wiki/Join_(SQL)
http://www.w3.org/TR/rdf-concepts/

Cubicweb Documentation, Release 3.38.10

Variables and typing

Entities and values to browse and/or select are represented in the query by variables that must be written in capital
letters.

With RQL, we do not distinguish between entities and attributes. The value of an attribute is considered as an entity of
a particular type (see below), linked to one (real) entity by a relation called the name of the attribute, where the entity
is the subject and the attribute the object.

The possible type(s) for each variable is derived from the schema according to the constraints expressed above and
thanks to the relations between each variable.

We can restrict the possible types for a variable using the special relation is in the restrictions.

Virtual relations

Those relations may only be used in RQL query but are not actual attributes of your entities.

• has_text: relation to use to query the full text index (only for entities having fulltextindexed attributes).

• identity: relation to use to tell that a RQL variable is the same as another when you’ve to use two different
variables for querying purpose. On the opposite it’s also useful together with the NOT operator to tell that two
variables should not identify the same entity

Literal expressions

Bases types supported by RQL are those supported by yams schema. Literal values are expressed as explained below:

• string should be between double or single quotes. If the value contains a quote, it should be preceded by a
backslash ‘\’

• floats separator is dot ‘.’

• boolean values are TRUE and FALSE keywords

• date and time should be expressed as a string with ISO notation : YYYY/MM/DD [hh:mm], or using keywords
TODAY and NOW

You may also use the NULL keyword, meaning ‘unspecified’.

Operators

Logical operators

AND, OR, NOT, ','

‘,’ is equivalent to ‘AND’ but with the smallest among the priority of logical operators (see Operators priority).

9.2. Relation Query Language (RQL) 289

Cubicweb Documentation, Release 3.38.10

Mathematical operators

Operator Description Example Result
+ addition 2 + 3 5
- subtraction 2 - 3 -1
* multiplication 2 * 3 6
/ division 4 / 2 2
% modulo (remainder) 5 % 4 1
^ exponentiation 2.0 ^ 3.0 8
& bitwise AND 91 & 15 11
| bitwise OR 32 | 3 35
bitwise XOR 17 # 5 20
~ bitwise NOT ~1 -2
<< bitwise shift left 1 << 4 16
>> bitwise shift right 8 >> 2 2

Notice integer division truncates results depending on the backend behaviour. For instance, postgresql does.

Comparison operators

=, !=, <, <=, >=, >, IN

The syntax to use comparison operators is:

VARIABLE attribute <operator> VALUE

The = operator is the default operator and can be omitted, i.e. :

VARIABLE attribute = VALUE

is equivalent to

VARIABLE attribute VALUE

The operator IN provides a list of possible values:

Any X WHERE X name IN ('chauvat', 'fayolle', 'di mascio', 'thenault')

String operators

LIKE, ILIKE, ~=, REGEXP

The LIKE string operator can be used with the special character % in a string as wild-card:

-- match every entity whose name starts with 'Th'
Any X WHERE X name ~= 'Th%'
-- match every entity whose name endswith 'lt'
Any X WHERE X name LIKE '%lt'
-- match every entity whose name contains a 'l' and a 't'
Any X WHERE X name LIKE '%l%t%'

290 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

ILIKE is the case insensitive version of LIKE. It’s not available on all backend (e.g. sqlite doesn’t support it). If not
available for your backend, ILIKE will behave like LIKE.

~= is a shortcut version of ILIKE, or of LIKE when the former is not available on the back-end.

The REGEXP is an alternative to LIKE that supports POSIX regular expressions:

-- match entities whose title starts with a digit
Any X WHERE X title REGEXP "^[0-9].*"

The underlying SQL operator used is back-end-dependent :

• the ~ operator is used for postgresql,

• the REGEXP operator for mysql and sqlite.

Other back-ends are not supported yet.

Operators priority

1. (,)

2. ^, <<, >>

3. *, /, %, &

4. +, -, |, #

5. NOT

6. AND

7. OR

8. ,

Search Query

Simplified grammar of search query:

[`DISTINCT`] `Any` V1 (, V2) *
[`GROUPBY` V1 (, V2) *] [`ORDERBY` <orderterms>]
[`LIMIT` <value>] [`OFFSET` <value>]
[`WHERE` <triplet restrictions>]
[`WITH` V1 (, V2)* BEING (<query>)]
[`HAVING` <other restrictions>]
[`UNION` <query>]

9.2. Relation Query Language (RQL) 291

Cubicweb Documentation, Release 3.38.10

Selection

The fist occuring clause is the selection of terms that should be in the result set. Terms may be variable, literals, function
calls, arithmetic, etc. and each term is separated by a comma.

There will be as much column in the result set as term in this clause, respecting order.

Syntax for function call is somewhat intuitive, for instance:

Any UPPER(N) WHERE P firstname N

Grouping and aggregating

The GROUPBY keyword is followed by a list of terms on which results should be grouped. They are usually used with
aggregate functions, responsible to aggregate values for each group (see Aggregate functions).

For grouped queries, all selected variables must be either aggregated (i.e. used by an aggregate function) or grouped
(i.e. listed in the GROUPBY clause).

Sorting

The ORDERBY keyword if followed by the definition of the selection order: variable or column number followed by
sorting method (ASC, DESC), ASC being the default. If the sorting method is not specified, then the sorting is ascendant
(ASC).

It is also possible to precise a specific ordering for NULL values. The NULLSFIRST and NULLSLAST options can be
used to determine whether nulls appear before or after non-null values in the sort ordering. By default, null values sort
as if larger than any non-null value; that is, NULLSFIRST is the default for DESC order, and NULLSLAST otherwise.
These options are written after the sorting method when it is specified. For instance, this request will return all projects
ordered by creation date in descending order, with projects with no date in last position.

Any X ORDERBY Y DESC NULLSLAST WHERE X creation_date Y

Pagination

The LIMIT and OFFSET keywords may be respectively used to limit the number of results and to tell from which result
line to start (for instance, use LIMIT 20 to get the first 20 results, then LIMIT 20 OFFSET 20 to get the next 20.

Restrictions

The WHERE keyword introduce one of the “main” part of the query, where you “define” variables and add some restric-
tions telling what you’re interested in.

It’s a list of triplets “subject relation object”, e.g. V1 relation (V2 | <static value>). Triplets are separated using Logical
operators.

Note: About the negation operator (NOT):

• NOT X relation Y is equivalent to NOT EXISTS(X relation Y)

• Any X WHERE NOT X owned_by U means “entities that have no relation owned_by”.

292 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

• Any X WHERE NOT X owned_by U, U login "syt" means “the entity have no relation owned_by with the
user syt”. They may have a relation “owned_by” with another user.

In this clause, you can also use EXISTS when you want to know if some expression is true and do not need the complete
set of elements that make it true. Testing for existence is much faster than fetching the complete set of results, especially
when you think about using OR against several expressions. For instance if you want to retrieve versions which are in
state “ready” or tagged by “priority”, you should write :

Any X ORDERBY PN,N
WHERE X num N, X version_of P, P name PN,

EXISTS(X in_state S, S name "ready")
OR EXISTS(T tags X, T name "priority")

not

Any X ORDERBY PN,N
WHERE X num N, X version_of P, P name PN,

(X in_state S, S name "ready")
OR (T tags X, T name "priority")

Both queries aren’t at all equivalent :

• the former will retrieve all versions, then check for each one which are in the matching state of or tagged by the
expected tag,

• the later will retrieve all versions, state and tags (cartesian product!), compute join and then exclude each row
which are in the matching state or tagged by the expected tag. This implies that you won’t get any result if the
in_state or tag tables are empty (ie there is no such relation in the application). This is usually NOT what you
want.

Another common case where you may want to use EXISTS is when you find yourself using DISTINCT at the beginning
of your query to remove duplicate results. The typical case is when you have a multivalued relation such as Version
version_of Project and you want to retrieve projects which have a version:

Any P WHERE V version_of P

will return each project number of versions times. So you may be tempted to use:

DISTINCT Any P WHERE V version_of P

This will work, but is not efficient, as it will use the SELECT DISTINCT SQL predicate, which needs to retrieve all
projects, then sort them and discard duplicates, which can have a very high cost for large result sets. So the best way
to write this is:

Any P WHERE EXISTS(V version_of P)

You can also use the question mark (?) to mark optional relations. This allows you to select entities related or not to
another. It is a similar concept to Left outer join:

the result of a left outer join (or simply left join) for table A and B always contains all records of the “left”
table (A), even if the join-condition does not find any matching record in the “right” table (B).

You must use the ? behind a variable to specify that the relation to that variable is optional. For instance:

• Bugs of a project attached or not to a version

Any X, V WHERE X concerns P, P eid 42, X corrected_in V?

9.2. Relation Query Language (RQL) 293

http://en.wikipedia.org/wiki/Join_(SQL)#Left_outer_join

Cubicweb Documentation, Release 3.38.10

You will get a result set containing all the project’s tickets, with either the version in which it’s fixed or None for
tickets not related to a version.

• All cards and the project they document if any

Any C, P WHERE C is Card, P? documented_by C

Notice you may also use outer join:

• on the RHS of attribute relation, e.g.

Any X WHERE X ref XR, Y name XR?

so that Y is outer joined on X by ref/name attributes comparison

• on any side of an HAVING expression, e.g.

Any X WHERE X creation_date XC, Y creation_date YC
HAVING YEAR(XC)=YEAR(YC)?

so that Y is outer joined on X by comparison of the year extracted from their creation date.

Any X WHERE X creation_date XC, Y creation_date YC
HAVING YEAR(XC)?=YEAR(YC)

would outer join X on Y instead.

Having restrictions

The HAVING clause, as in SQL, may be used to restrict a query according to value returned by an aggregate function,
e.g.

Any X GROUPBY X WHERE X relation Y HAVING COUNT(Y) > 10

It may however be used for something else: In the WHERE clause, we are limited to triplet expressions, so some things
may not be expressed there. Let’s take an example : if you want to get people whose upper-cased first name equals to
another person upper-cased first name. There is no proper way to express this using triplet, so you should use something
like:

Any X WHERE X firstname XFN, Y firstname YFN, NOT X identity Y HAVING UPPER(XFN) =␣
→˓UPPER(YFN)

Another example: imagine you want person born in 2000:

Any X WHERE X birthday XB HAVING YEAR(XB) = 2000

Notice that while we would like this to work without the HAVING clause, this can’t be currently be done because it
introduces an ambiguity in RQL’s grammar that can’t be handled by Yapps, the parser’s generator we’re using.

294 Chapter 9. Appendixes

http://theory.stanford.edu/~amitp/yapps/

Cubicweb Documentation, Release 3.38.10

Sub-queries

The WITH keyword introduce sub-queries clause. Each sub-query has the form:

V1(,V2) BEING (rql query)

Variables at the left of the BEING keyword defines into which variables results from the sub-query will be mapped to
into the outer query. Sub-queries are separated from each other using a comma.

Let’s say we want to retrieve for each project its number of versions and its number of tickets. Due to the nature of
relational algebra behind the scene, this can’t be achieved using a single query. You have to write something along the
line of:

Any X, VC, TC WHERE X identity XX
WITH X, VC BEING (Any X, COUNT(V) GROUPBY X WHERE V version_of X),

XX, TC BEING (Any X, COUNT(T) GROUPBY X WHERE T ticket_of X)

Notice that we can’t reuse a same variable name as alias for two different sub-queries, hence the usage of ‘X’ and ‘XX’
in this example, which are then unified using the special identity relation (see Virtual relations).

Warning: Sub-queries define a new variable scope, so even if a variable has the same name in the outer query and
in the sub-query, they technically aren’t the same variable. So:

Any W, REF WITH W, REF BEING
(Any W, REF WHERE W is Workcase, W ref REF,

W concerned_by D, D name "Logilab")

could be written:
Any W, REF WITH W, REF BEING

(Any W1, REF1 WHERE W1 is Workcase, W1 ref REF1,
W1 concerned_by D, D name "Logilab")

Also, when a variable is coming from a sub-query, you currently can’t reference its attribute or inlined relations in
the outer query, you’ve to fetch them in the sub-query. For instance, let’s say we want to sort by project name in our
first example, we would have to write:

Any X, VC, TC ORDERBY XN WHERE X identity XX
WITH X, XN, VC BEING (Any X, COUNT(V) GROUPBY X,XN WHERE V version_of X, X name XN),

XX, TC BEING (Any X, COUNT(T) GROUPBY X WHERE T ticket_of X)

instead of:
Any X, VC, TC ORDERBY XN WHERE X identity XX, X name XN,
WITH X, XN, VC BEING (Any X, COUNT(V) GROUPBY X WHERE V version_of X),

XX, TC BEING (Any X, COUNT(T) GROUPBY X WHERE T ticket_of X)

which would result in a SQL execution error.

9.2. Relation Query Language (RQL) 295

Cubicweb Documentation, Release 3.38.10

Union

You may get a result set containing the concatenation of several queries using the UNION. The selection of each query
should have the same number of columns.

(Any X, XN WHERE X is Person, X surname XN) UNION (Any X,XN WHERE X is Company, X name␣
→˓XN)

Available functions

Below is the list of aggregate and transformation functions that are supported natively by the framework. Notice that
cubes may define additional functions.

Aggregate functions

COUNT(Any) return the number of rows
MIN(Any) return the minimum value
MAX(Any) return the maximum value
AVG(Any) return the average value
SUM(Any) return the sum of values
GROUP_CONCAT(String) return each unique value separated by a comma (for string only)

All aggregate functions above take a single argument. Take care some aggregate functions (e.g. MAX, MIN) may return
None if there is no result row.

String transformation functions

UPPER(String) upper case the string
LOWER(String) lower case the string
LENGTH(String) return the length of the string
SUBSTRING(String,
start,
length)

extract from the string a string starting at given index and of given length

TEXT_LIMIT_SIZE(String,
max size)

if the length of the string is greater than given max size, strip it and add ellipsis (”. . . ”). The
resulting string will hence have max size + 3 characters

LIMIT_SIZE(String,
format, max
size)

similar to the above, but allow to specify the MIME type of the text contained by the string.
Supported formats are text/html, text/xhtml and text/xml. All others will be considered as plain
text. For non plain text format, sgml tags will be first removed before limiting the string.

296 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

Date extraction functions

YEAR(Date) return the year of a date or datetime
MONTH(Date) return the month of a date or datetime
DAY(Date) return the day of a date or datetime
HOUR(Datetime) return the hours of a datetime
MINUTE(Datetime) return the minutes of a datetime
SECOND(Datetime) return the seconds of a datetime
WEEKDAY(Date) return the day of week of a date or datetime. Sunday == 1, Saturday == 7.

Other functions

ABS(num) return the absolute value of a number
RANDOM() return a pseudo-random value from 0.0 to 1.0
FSPATH(X) expect X to be an attribute whose value is stored in a BFSStorage and return its path on the file

system
FTIRANK(X) expect X to be an entity used in a has_text relation, and return a number corresponding to the rank

order of each resulting entity
CAST(Type,
X)

expect X to be an attribute and return it casted into the given final type

Examples

• Search for the object of identifier 53

Any X WHERE X eid 53

• Search material such as comics, owned by syt and available

Any X WHERE X is Document,
X occurence_of F, F class C, C name 'Comics',
X owned_by U, U login 'syt',
X available TRUE

• Looking for people working for eurocopter interested in training

Any P WHERE P is Person, P work_for S, S name 'Eurocopter',
P interested_by T, T name 'training'

• Search note less than 10 days old written by jphc or ocy

Any N WHERE N is Note, N written_on D, D day> (today -10),
N written_by P, P name 'jphc' or P name 'ocy'

• Looking for people interested in training or living in Paris

Any P WHERE P is Person, EXISTS(P interested_by T, T name 'training') OR
(P city 'Paris')

• The surname and firstname of all people

9.2. Relation Query Language (RQL) 297

Cubicweb Documentation, Release 3.38.10

Any N, P WHERE X is Person, X name N, X firstname P

Note that the selection of several entities generally force the use of “Any” because the type specification applies
otherwise to all the selected variables. We could write here

String N, P WHERE X is Person, X name N, X first_name P

Note: You can not specify several types with * . . . where X is FirstType or X is SecondType*. To specify several
types explicitly, you have to do

Any X WHERE X is IN (FirstType, SecondType)

Insertion query

INSERT <entity type> V1 (, <entity type> V2) * : <assignments> [WHERE <restriction>]

assignments list of relations to assign in the form V1 relationship V2 | <static value>

The restriction can define variables used in assignments.

Caution, if a restriction is specified, the insertion is done for each line result returned by the restriction.

• Insert a new person named ‘foo’

INSERT Person X: X name 'foo'

• Insert a new person named ‘foo’, another called ‘nice’ and a ‘friend’ relation between them

INSERT Person X, Person Y: X name 'foo', Y name 'nice', X friend Y

• Insert a new person named ‘foo’ and a ‘friend’ relation with an existing person called ‘nice’

INSERT Person X: X name 'foo', X friend Y WHERE Y name 'nice'

Update and relation creation queries

SET <assignements> [WHERE <restriction>]

Caution, if a restriction is specified, the update is done for each result line returned by the restriction.

• Renaming of the person named ‘foo’ to ‘bar’ with the first name changed

SET X name 'bar', X firstname 'original' WHERE X is Person, X name 'foo'

• Insert a relation of type ‘know’ between objects linked by the relation of type ‘friend’

SET X know Y WHERE X friend Y

298 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

Deletion query

DELETE (<entity type> V) | (V1 relation v2),. . . [WHERE <restriction>]

Caution, if a restriction is specified, the deletion is made for each line result returned by the restriction.

• Deletion of the person named ‘foo’

DELETE Person X WHERE X name 'foo'

• Removal of all relations of type ‘friend’ from the person named ‘foo’

DELETE X friend Y WHERE X is Person, X name 'foo'

9.2.3 Debugging RQL

Available levels

Server debugging flags. They may be combined using binary operators.

cubicweb.server.DBG_NONE = 0

no debug information

cubicweb.server.DBG_RQL = 1

rql execution information

cubicweb.server.DBG_SQL = 2

executed sql

cubicweb.server.DBG_REPO = 4

repository events

cubicweb.server.DBG_HOOKS = 16

hooks

cubicweb.server.DBG_OPS = 32

operations

cubicweb.server.DBG_MORE = 128

more verbosity

cubicweb.server.DBG_ALL = 247

all level enabled

Enable verbose output

To debug your RQL statements, it can be useful to enable a verbose output:

from cubicweb import server
server.set_debug(server.DBG_RQL|server.DBG_SQL|server.DBG_ALL)

cubicweb.server.set_debug(debugmode)
change the repository debugging mode

Another example showing how to debug hooks at a specific code site:

9.2. Relation Query Language (RQL) 299

Cubicweb Documentation, Release 3.38.10

from cubicweb.server import debugged, DBG_HOOKS
with debugged(DBG_HOOKS):

person.cw_set(works_for=company)

Detect largest RQL queries

See Profiling and performance chapter (see Profiling and performance).

API

class cubicweb.server.debugged(debugmode)
Context manager and decorator to help debug the repository.

It can be used either as a context manager:

>>> with debugged('DBG_RQL | DBG_REPO'):
... # some code in which you want to debug repository activity,
... # seing information about RQL being executed an repository events.

or as a function decorator:

>>> @debugged('DBG_RQL | DBG_REPO')
... def some_function():
... # some code in which you want to debug repository activity,
... # seing information about RQL being executed an repository events

The debug mode will be reset to its original value when leaving the “with” block or the decorated function.

9.2.4 RQL usecases

Search bar

The search bar is available on a CubicWeb instance to use RQL and it’s use and configuration is described in the doc.

Use of RQL in Card documents - ReST

With a CubicWeb instance supporting object types with ReST content (for example Card), one can build content based
on RQL queries as dynamic documents.

For this, use the rql and rql-table ReST directive, for more information about custom ReST directives head over to the
sphinx documentation which uses them extensively.

300 Chapter 9. Appendixes

https://forge.extranet.logilab.fr/cubicweb/cubes/card
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/directives.html

Cubicweb Documentation, Release 3.38.10

rql directive

The rql directive takes as input an RQL expression and a view to apply to the result.

For example, create a Card content by opening http://cubicweb_example.org/add/Card and add the following content,
as an example : a table of blog entries (10 most recent blog entries table with user and date information)

Recent blog entries

:rql:`Any B,U,D ORDERBY D DESC LIMIT 10 WHERE B is BlogEntry, B title T, B creation_date␣
→˓D, B created_by U:table`

book/images/example-card-with-rql-directive.png

rql-table directive

rql-table enables more customization, enabling you to modify the column (header) contents, and the view applied for
a specific column (colvids).

For example, create a Card content by opening http://cubicweb_example.org/add/Card and add the following content

Blog entries with rql-table

.. rql-table::
:vid: table
:headers: Title with link, who wrote it, at what date
:colvids: 1=sameetypelist

Any B,U,D ORDERBY D DESC LIMIT 10 WHERE B is BlogEntry, B title T, B creation_date D,␣
→˓B created_by U

All fields but the RQL string are optional. The :headers: option can contain empty column names.

book/images/example-card-with-rql-table-directive.png

9.2. Relation Query Language (RQL) 301

http://cubicweb_example.org/add/Card
http://cubicweb_example.org/add/Card

Cubicweb Documentation, Release 3.38.10

Use in python projects and CLI

cwclientlib <https://pypi.org/project/cwclientlib/> enables you to use RQL in your python projects using only web re-
quests. This project also provides a remote command line interface (CLI) you can use to replace a server side cubicweb-
ctl shell.

Use in JavaScript/React components

cwclientelements <https://forge.extranet.logilab.fr/open-source/cwclientelements> is a library of reusable React com-
ponents for building web application with cubicweb and RQL.

9.2.5 Implementation

BNF grammar

The terminal elements are in capital letters, non-terminal in lowercase. The value of the terminal elements (between
quotes) is a Python regular expression.

statement ::= (select | delete | insert | update) ';'

select specific rules
select ::= 'DISTINCT'? E_TYPE selected_terms restriction? group? sort?

selected_terms ::= expression (',' expression)*

group ::= 'GROUPBY' VARIABLE (',' VARIABLE)*

sort ::= 'ORDERBY' sort_term (',' sort_term)*

sort_term ::= VARIABLE sort_method =?

sort_method ::= 'ASC' | 'DESC'

delete specific rules
delete ::= 'DELETE' (variables_declaration | relations_declaration) restriction?

insert specific rules
insert ::= 'INSERT' variables_declaration (':' relations_declaration)? restriction?

update specific rules
update ::= 'SET' relations_declaration restriction

common rules
variables_declaration ::= E_TYPE VARIABLE (',' E_TYPE VARIABLE)*

relations_declaration ::= simple_relation (',' simple_relation)*

(continues on next page)

302 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

simple_relation ::= VARIABLE R_TYPE expression

restriction ::= 'WHERE' relations

relations ::= relation (LOGIC_OP relation)*
| '(' relations')'

relation ::= 'NOT'? VARIABLE R_TYPE COMP_OP? expression
| 'NOT'? R_TYPE VARIABLE 'IN' '(' expression (',' expression)* ')'

expression ::= var_or_func_or_const (MATH_OP var_or_func_or_const) *
| '(' expression ')'

var_or_func_or_const ::= VARIABLE | function | constant

function ::= FUNCTION '(' expression (',' expression) * ')'

constant ::= KEYWORD | STRING | FLOAT | INT

tokens
LOGIC_OP ::= ',' | 'OR' | 'AND'
MATH_OP ::= '+' | '-' | '/' | '*'
COMP_OP ::= '>' | '>=' | '=' | '<=' | '<' | '~=' | 'LIKE'

FUNCTION ::= 'MIN' | 'MAX' | 'SUM' | 'AVG' | 'COUNT' | 'UPPER' | 'LOWER'

VARIABLE ::= '[A-Z][A-Z0-9]*'
E_TYPE ::= '[A-Z]\w*'
R_TYPE ::= '[a-z_]+'

KEYWORD ::= 'TRUE' | 'FALSE' | 'NULL' | 'TODAY' | 'NOW'
STRING ::= "'([^'\]|\\.)*'" |'"([^\"]|\\.)*\"'
FLOAT ::= '\d+\.\d*'
INT ::= '\d+'

Internal representation (syntactic tree)

The tree research does not contain the selected variables (e.g. there is only what follows “WHERE”).

The insertion tree does not contain the variables inserted or relations defined on these variables (e.g. there is only what
follows “WHERE”).

The removal tree does not contain the deleted variables and relations (e.g. there is only what follows the “WHERE”).

The update tree does not contain the variables and relations updated (e.g. there is only what follows the “WHERE”).

Select ((Relationship | And | Or)?, Group?, Sort?)
Insert (Relations | And | Or)?
Delete (Relationship | And | Or)?
Update (Relations | And | Or)?

And ((Relationship | And | Or), (Relationship | And | Or))
(continues on next page)

9.2. Relation Query Language (RQL) 303

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

Or ((Relationship | And | Or), (Relationship | And | Or))

Relationship ((VariableRef, Comparison))

Comparison ((Function | MathExpression | Keyword | Constant | VariableRef) +)

Function (())
MathExpression ((MathExpression | Keyword | Constant | VariableRef), (MathExpression |␣
→˓Keyword | Constant | VariableRef))

Group (VariableRef +)
Sort (SortTerm +)
SortTerm (VariableRef +)

VariableRef ()
Variable ()
Keyword ()
Constant ()

Known limitations

• The current implementation does not support linking two relations of type ‘is’ with an OR. I do not think that
the negation is supported on this type of relation (XXX to be confirmed).

• missing COALESCE and certainly other things. . .

• writing an rql query requires knowledge of the used schema (with real relation names and entities, not those
viewed in the user interface). On the other hand, we cannot really bypass that, and it is the job of a user interface
to hide the RQL.

Topics

It would be convenient to express the schema matching relations (non-recursive rules):

Document class Type <-> Document occurence_of Fiche class Type
Sheet class Type <-> Form collection Collection class Type

Therefore 1. becomes:

Document X where
X class C, C name 'Cartoon'
X owned_by U, U login 'syt'
X available true

I’m not sure that we should handle this at RQL level . . .

There should also be a special relation ‘anonymous’.

304 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

9.3 Introducing Mercurial

9.3.1 Introduction

Mercurial manages a distributed repository containing revisions trees (each revision indicates the changes required
to obtain the next, and so on). Locally, we have a repository containing revisions tree, and a working directory. It
is possible to put in its working directory, one of the versions of its local repository, modify and then push it in its
repository. It is also possible to get revisions from another repository or to export its own revisions from the local
repository to another repository.

In contrast to CVS/Subversion, we usually create a repository per project to manage.

In a collaborative development, we usually create a central repository accessible to all developers of the project. These
central repository is used as a reference. According to their needs, everyone can have a local repository, that they will
have to synchronize with the central repository from time to time.

9.3.2 Major commands

• Create a local repository:

hg clone ssh://myhost//home/src/repo

• See the contents of the local repository (graphical tool in Qt):

hgview

• Add a sub-directory or file in the current directory:

hg add subdir

• Move to the working directory a specific revision (or last revision) from the local repository:

hg update [identifier-revision]
hg up [identifier-revision]

• Get in its local repository, the tree of revisions contained in a remote repository (this does not change the local
directory):

hg pull ssh://myhost//home/src/repo
hg pull -u ssh://myhost//home/src/repo # equivalent to pull + update

• See what are the heads of branches of the local repository if a pull returned a new branch:

hg heads

• Submit the working directory in the local repository (and create a new revision):

hg commit
hg ci

• Merge with the mother revision of local directory, another revision from the local respository (the new revision
will be then two mothers revisions):

hg merge identifier-revision

9.3. Introducing Mercurial 305

http://www.selenic.com/mercurial/

Cubicweb Documentation, Release 3.38.10

• Export to a remote repository, the tree of revisions in its content local respository (this does not change the local
directory):

hg push ssh://myhost//home/src/repo

• See what local revisions are not in another repository:

hg outgoing ssh://myhost//home/src/repo

• See what are the revisions of a repository not found locally:

hg incoming ssh://myhost//home/src/repo

• See what is the revision of the local repository which has been taken out from the working directory and amended:

hg parent

• See the differences between the working directory and the mother revision of the local repository, possibly to
submit them in the local repository:

hg diff
hg commit-tool
hg ct

9.3.3 Best Practices

• Remember to hg pull -u regularly, and particularly before a hg commit.

• Remember to hg push when your repository contains a version relatively stable of your changes.

• If a hg pull -u created a new branch head:

1. find its identifier with hg head

2. merge with hg merge

3. hg ci

4. hg push

9.3.4 More information

For more information about Mercurial, please refer to the Mercurial project online documentation.

9.4 Installation dependencies

When you run CubicWeb from source, either by downloading the tarball or cloning the mercurial tree, here is the list
of tools and libraries you need to have installed in order for CubicWeb to work:

• yapps - http://theory.stanford.edu/~amitp/yapps/ - http://pypi.python.org/pypi/Yapps2

• pygraphviz - http://networkx.lanl.gov/pygraphviz/ - http://pypi.python.org/pypi/pygraphviz

• docutils - http://docutils.sourceforge.net/ - http://pypi.python.org/pypi/docutils

• lxml - http://codespeak.net/lxml - http://pypi.python.org/pypi/lxml

306 Chapter 9. Appendixes

http://www.selenic.com/mercurial/wiki/
http://theory.stanford.edu/~amitp/yapps/
http://pypi.python.org/pypi/Yapps2
http://networkx.lanl.gov/pygraphviz/
http://pypi.python.org/pypi/pygraphviz
http://docutils.sourceforge.net/
http://pypi.python.org/pypi/docutils
http://codespeak.net/lxml
http://pypi.python.org/pypi/lxml

Cubicweb Documentation, Release 3.38.10

• logilab-common - https://www.logilab.org/project/logilab-common - http://pypi.python.org/pypi/
logilab-common/

• logilab-database - https://www.logilab.org/project/logilab-database - http://pypi.python.org/pypi/
logilab-database/

• logilab-constraint - https://www.logilab.org/project/logilab-constraint - http://pypi.python.org/pypi/constraint/

• logilab-mtconverter - https://www.logilab.org/project/logilab-mtconverter - http://pypi.python.org/pypi/
logilab-mtconverter

• rql - https://www.logilab.org/project/rql - http://pypi.python.org/pypi/rql

• yams - https://www.logilab.org/project/yams - http://pypi.python.org/pypi/yams

• indexer - https://www.logilab.org/project/indexer - http://pypi.python.org/pypi/indexer

• passlib - https://code.google.com/p/passlib/ - http://pypi.python.org/pypi/passlib

If you’re using a Postgresql database (recommended):

• psycopg2 - http://initd.org/projects/psycopg2 - http://pypi.python.org/pypi/psycopg2

Other optional packages:

• fyzz - https://www.logilab.org/project/fyzz - http://pypi.python.org/pypi/fyzz to activate Sparql querying

Any help with the packaging of CubicWeb for more than Debian/Ubuntu (including eggs, buildouts, etc) will be greatly
appreciated.

9.5 Javascript docstrings

Whereas in Python source code we only need to include a module docstrings using the directive .. automodule::
mypythonmodule, we will have to explicitely define Javascript modules and functions in the doctrings since there is no
native directive to include Javascript files.

9.5.1 Rest generation

pyjsrest is a small utility parsing Javascript doctrings and generating the corresponding Restructured file used by Sphinx
to generate HTML documentation. This script will have the following structure:

===========
filename.js
===========
.. module:: filename.js

We use the .. module:: directive to register a javascript library as a Python module for Sphinx. This provides an entry
in the module index.

The contents of the docstring found in the javascript file will be added as is following the module declaration. No
treatment will be done on the doctring. All the documentation structure will be in the docstrings and will comply with
the following rules.

9.5. Javascript docstrings 307

https://www.logilab.org/project/logilab-common
http://pypi.python.org/pypi/logilab-common/
http://pypi.python.org/pypi/logilab-common/
https://www.logilab.org/project/logilab-database
http://pypi.python.org/pypi/logilab-database/
http://pypi.python.org/pypi/logilab-database/
https://www.logilab.org/project/logilab-constraint
http://pypi.python.org/pypi/constraint/
https://www.logilab.org/project/logilab-mtconverter
http://pypi.python.org/pypi/logilab-mtconverter
http://pypi.python.org/pypi/logilab-mtconverter
https://www.logilab.org/project/rql
http://pypi.python.org/pypi/rql
https://www.logilab.org/project/yams
http://pypi.python.org/pypi/yams
https://www.logilab.org/project/indexer
http://pypi.python.org/pypi/indexer
https://code.google.com/p/passlib/
http://pypi.python.org/pypi/passlib
http://initd.org/projects/psycopg2
http://pypi.python.org/pypi/psycopg2
https://www.logilab.org/project/fyzz
http://pypi.python.org/pypi/fyzz

Cubicweb Documentation, Release 3.38.10

9.5.2 Docstring structure

Basically we document javascript with RestructuredText docstring following the same convention as documenting
Python code.

The doctring in Javascript files must be contained in standard Javascript comment signs, starting with /** and ending
with */, such as:

/**
* My comment starts here.
* This is the second line prefixed with a `*`.
* ...
* ...
* All the follwing line will be prefixed with a `*` followed by a space.
* ...
* ...
*/

Comments line prefixed by // will be ignored. They are reserved for source code comments dedicated to developers.

9.5.3 Javscript functions docstring

By default, the function directive describes a module-level function.

function directive

Its purpose is to define the function prototype such as:

.. function:: loadxhtml(url, data, reqtype, mode)

If any namespace is used, we should add it in the prototype for now, until we define an appropriate directive:

.. function:: jQuery.fn.loadxhtml(url, data, reqtype, mode)

Function parameters

We will define function parameters as a bulleted list, where the parameter name will be backquoted and followed by its
description.

Example of a javascript function docstring:

.. function:: loadxhtml(url, data, reqtype, mode)

cubicweb loadxhtml plugin to make jquery handle xhtml response

fetches `url` and replaces this's content with the result

Its arguments are:

* `url`

* `mode`, how the replacement should be done (default is 'replace')
(continues on next page)

308 Chapter 9. Appendixes

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

Possible values are :
- 'replace' to replace the node's content with the generated HTML
- 'swap' to replace the node itself with the generated HTML
- 'append' to append the generated HTML to the node's content

Optional parameter specification

Javascript functions handle arguments not listed in the function signature. In the javascript code, they will be flagged
using /* . . . */. In the docstring, we flag those optional arguments the same way we would define it in Python:

.. function:: asyncRemoteExec(fname, arg1=None, arg2=None)

9.5. Javascript docstrings 309

Cubicweb Documentation, Release 3.38.10

310 Chapter 9. Appendixes

CHAPTER

TEN

CHANGELOG

10.1 3.38.10 (2023-07-10)

10.1.1 Bug fixes

• migration: allow to drop a cube even if it’s a dependency (https://forge.extranet.logilab.fr/cubicweb/cubicweb/
-/issues/774)

10.2 3.38.9 (2023-06-07)

10.2.1 Bug fixes

• pyramid: allows to use None for timeout, max_age and reissue_time options

10.3 3.38.8 (2023-03-24)

10.3.1 Bug fixes

• testlib: define properly a generate_tzdatetime method with timezone (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/716)

10.3.2 Continuous integration

• avoid launching duplicated migractions tests

• clean CI of unused jobs

• disable can-i-merge

• don’t wait for tests to start QA jobs

• smoke_test: add timeout to request to avoid hanging up for too long

• smoke_test: handle ConnectionError situation

• test-cube-skeleton: ensure we use the same python version for smoke test than py3-* tests

311

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/774
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/774
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/716
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/716

Cubicweb Documentation, Release 3.38.10

10.4 3.38.7 (2023-03-07)

10.4.1 Bug fixes

• rdf: https instead of http for schema.org

• sphinx-theme 1.0 breaks doc build

• make sure we only install yapps2-logilab by updating depencies

• tried to format a string while missing one formatting argument

10.5 3.38.6 (2023-02-13)

10.5.1 Bug fixes

• hooks: notification things are no more in “views” registry

10.6 3.38.5 (2023-01-31)

10.6.1 Bug fixes

• remove deprecated import to cubicweb.web

10.7 3.38.4 (2023-01-17)

10.7.1 New features

• skeleton: remove format=pylint option from tox because it’s better without it

10.8 3.38.3 (2023-01-12)

10.8.1 Bug fixes

• avoid risking new cubes to install pre-release version of black

• formrenderers: use UStringIO instead of list to keep the same api as self.w (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/597)

• schema_exporters: Add missing description field for relations (e.g in_state) to schema exporter

312 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/597
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/597

Cubicweb Documentation, Release 3.38.10

10.8.2 Various changes

• changelog/3.38: add instruction on how to use 3.38/cubicweb_web_imports.py

10.9 3.38.2 (2023-01-03)

10.9.1 Bug fixes

• sobjects/notifications: keep RecipientsFinder class and subclass in the components registry for retrocompatibility

10.10 3.38.1 (2022-12-05)

10.10.1 New features

• schema: Export relations options on the schema (merge from 3.37)

10.10.2 Bug fixes

• schema_exporters: Add missing description field for relations (e.g in_state) to schema exporter (merge from
3.37)

10.11 3.38.0 (2022-11-22)

This is the last major release of the 3.* before the 4 branch.

In this release the whole cubicweb.web module and the cubicweb/view.py file have been extracted in the cubicweb_web
cube which is a dependency of cubicweb now. Automatic backward compatibility is provided by imports so your
projects should work with this new version without modifications.

A script to help migrating to this version is available in this repository in the 3.38 folder https://forge.extranet.logilab.
fr/cubicweb/cw_versions_migration_tools This script will change all the imports to match the news one for CubicWeb
3.38 and the cube cubicweb_web. It will not change your dependencies in your setup.py or __pkginfo__.py, you
have to do this yourself.

Its usage, once the dependencies has been installed (only RedBaron), is the following:

python 3.38/cubicweb_web_imports.py <path to my project>

It will hopefully save you quite some time.

10.9. 3.38.2 (2023-01-03) 313

https://forge.extranet.logilab.fr/cubicweb/cw_versions_migration_tools
https://forge.extranet.logilab.fr/cubicweb/cw_versions_migration_tools

Cubicweb Documentation, Release 3.38.10

10.11.1 New features

• the cubicweb_web cube is now a dependency of cubicweb

• add adapter_regid as parameter on add_entity_to_graph (#535)

• add relation constraints to schema export

• cubicweb.web extraction: change all import of cubicweb.web to cubicweb_web

• cubicweb.web removal: add deprecation warning in view module

• cubicweb.web removal: add generic deprecation warning in all web modules

• cwctl: don’t check if we need to upgrade anything when running cwctl versions (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/563)

• doc: clarify when rich had been removed

• export relation options in schema options key

• pkg: upgrade version of waitress to 2.1.1 or more, for security reason. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/543)

• rdf: use entity.absolute_url instead of cwuri in RDF adapters (#534)

• redirection: pyramid redirection now keep parameters by default (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/566)

• rql: Add “IRQLInterface” adapter to force defining a rql interface which is available on RQL projection varaibles

• rql: Add entities function and attribute from RQL queries

• serverctl: add a command to list all unused indexes

• test/content-negociation: display rdf body on failing tests for easier debugging

• test: use testing.cubicweb instead of testing.fr in test (https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/
issues/374) BREAKING CHANGE: use testing.cubicweb instead of testing.fr in test

10.11.2 Bug fixes

• add retrocompatibility for anonymized_request that is now in cubicweb_web

• base64.decodestring is deprecated and has been removed

• cubicweb_web/deprecations: increase warning stack level to show correct line

• cubicweb_web: change magic modules imports to uses cubicweb_web

• cwconfig: Ensure the cube web is available with cubicweb-ctl commands

• CWRelation.rtype api is different from CWRelation.relation_type api

• ensure that the “web” cube is in the list of cubes dependencies

• hook: Search the notification view from the good registry

• htmlwidgets: BoxLink rendering is broken

• make i18ncube load web cube’s appobjects

• mod: Load sobjects.notification and sobjects.supervising even if no cubicweb_web

• notification: Make NotificationView inherits from AppObject

• pyramid: adapt TestApp.post_json method to CSRF

314 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/563
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/563
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/566
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/566
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/374
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/374

Cubicweb Documentation, Release 3.38.10

• pyramid: adapt TestApp.put_json method to CSRF

• pyramid: try to get “/login” if “/” is forbidden

• req: add missing set_log_methods on CubicWebRequestBase

• schema_exporters: handle symmetrical relation in schema export. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/568)

• supervising: Adapt SupervisingView for the NotificationView API

• supervising: Uses the NotificationView for the supervising instead of component

• test-instance-creation: cubicweb now needs the web cube to be installed

10.11.3 Continuous integration

Most python test have been splitted to speed up the CI speed.

• .gitlab-ci.yml: refactoring py3 tests declaration using a base template

• add check-dependencies-resolution job

• add mypy job

• add safety job

• add twine-check job

• fix: “base” in py3-server-base clashed with “py3-base”, use “core” instead

• fix: py3-auto-test-views jobs wrongly launched py3-server-bases tests

• migrate to v2 of templates

• move to bullseye and pg13

• split py3-misc into several different tests

• split py3-server into several different tests

• test-instance-creation: pip –use-feature=in-tree-build is deprecated, remove it

• use .retry base template in (nearly) all jobs

10.11.4 Various changes

• [cubicweb 3.38] RequestSessionBase is deprecated, use RequestSessionAndConnectionBase instead

• remove mailing-list from “how to contribute” since it’s no more used (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/395)

• supervising: Refactor to not using self.w from NotificationView

• Unknown config option: log_print

10.11. 3.38.0 (2022-11-22) 315

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/395
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/395

Cubicweb Documentation, Release 3.38.10

10.12 3.37.17 (2023-07-10)

10.12.1 Bug fixes

• migration: allow to drop a cube even if it’s a dependency (https://forge.extranet.logilab.fr/cubicweb/cubicweb/
-/issues/774)

10.13 3.37.16 (2023-06-07)

10.13.1 Bug fixes

• pyramid: allows to use None for timeout, max_age and reissue_time options

10.14 3.37.15 (2023-03-24)

10.14.1 Bug fixes

• testlib: define properly a generate_tzdatetime method with timezone (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/716)

10.14.2 Continuous integration

• avoid launching duplicated migractions tests

• clean CI of unused jobs

• disable can-i-merge

• don’t wait for tests to start QA jobs

• smoke_test: add timeout to request to avoid hanging up for too long

• smoke_test: handle ConnectionError situation

• test-cube-skeleton: ensure we use the same python version for smoke test than py3-* tests

10.15 3.37.14 (2023-03-07)

10.15.1 Bug fixes

• rdf: https instead of http for schema.org

• sphinx-theme 1.0 breaks doc build

• make sure we only install yapps2-logilab by updating depencies

• tried to format a string while missing one formatting argument

316 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/774
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/774
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/716
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/716

Cubicweb Documentation, Release 3.38.10

10.16 3.37.13 (2023-01-27)

10.16.1 New features

• misc: allow to disable or not constraint check on fast drop script

10.17 3.37.12 (2023-01-17)

10.17.1 New features

• skeleton: remove format=pylint option from tox because it’s better without it

10.18 3.37.11 (2023-01-12)

10.18.1 Bug fixes

• avoid risking new cubes to install pre-release version of black

• formrenderers: use UStringIO instead of list to keep the same api as self.w (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/597)

• schema_exporters: Add missing description field for relations (e.g in_state) to schema exporter

10.19 3.37.10 (2022-12-05)

10.19.1 New features

• schema: Export relations options on the schema

10.19.2 Bug fixes

• schema_exporters: Add missing description field for relations (e.g in_state) to schema exporter

10.20 3.37.9 (2022-11-15)

10.20.1 Bug fixes

• hook: correct a typo, self.warn doesn’t exist

10.16. 3.37.13 (2023-01-27) 317

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/597
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/597

Cubicweb Documentation, Release 3.38.10

10.21 3.37.8 (2022-10-04)

10.21.1 Bug fixes

• attr: when an entity is not existing always return None when fetching its attributes (#599)

• web.views: escape text from the undohistory view (#598)

10.21.2 Various changes

• delete unused translations from *.po files (#600)

• skeleton: add long_description_content_type in setup.py

10.22 3.37.7 (2022-09-22)

10.22.1 Bug fixes

• startup_views: raise AuthenticationError if anon access is disabled on StartupView (https://forge.extranet.
logilab.fr/cubicweb/cubicweb/-/issues/595)

10.23 3.37.6 (2022-09-14)

10.23.1 Bug fixes

• bookmark: do not escape the xaddrelation view from ajaxedit module

10.24 3.37.5 (2022-08-30)

10.24.1 Bug fixes

• pyramid: Redirect to the wanted URL after a successfully loggedin (to #584)

• xss: Ensure to use the xml_escape method on entity attributes

• perf: Restore initial performances by removing the uneccessary join

10.25 3.37.4 (2022-07-21)

10.25.1 Bug fixes

• schema_exporters: handle symmetrical relation in schema export. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/568)

318 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/595
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/595
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568

Cubicweb Documentation, Release 3.38.10

10.25.2 Various changes

• feat(markdown)!: update Mardown version to 3.4 and rewrite urlize extension (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/569)

10.26 3.37.3 (2022-07-13)

10.26.1 Bug fixes

• htmlwidgets: BoxLink rendering is broken

10.27 3.37.2 (2022-06-03)

10.27.1 Bug fixes

• pyramid: adapt TestApp.put_json method to CSRF

10.28 3.37.1 (2022-06-01)

10.28.1 New features

• pkg: upgrade version of waitress to 2.1.1 or more, for security reason. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/543)

10.28.2 Bug fixes

• base64.decodestring is deprecated and has been removed

• pyramid tests: adapt TestApp.post_json method to CSRF

• pyramid tests: try to get “/login” if “/” is forbidden

10.29 3.37.0 (2022-03-31)

10.29.1 Breaking changes

• cubicweb.web.BaseWebConfiguration and cubicweb.web.WebConfigurationBase have been merged
into cubicweb.web.WebConfiguration

• cubicweb.web.CubicWebPyramidConfiguration had been removed

• you can nomore use -c option when creating a CW instance, since there is now only one kind of configuration:
all-in-one.conf

10.26. 3.37.3 (2022-07-13) 319

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/569
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/569
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543

Cubicweb Documentation, Release 3.38.10

10.29.2 New features

• add attributes constraints in exported schema

• depends on yams 0.48

• doc: mostly add links of issues

10.29.3 Bug fixes

• unittest_devctl: give all debugging informations

10.29.4 Continuous integration

• use templates

10.29.5 Various changes

• refactor!: merge BaseWebConfiguration into WebConfiguration

• refactor!: remove -c option to cubicweb-ctl create to only use all-in-one

• refactor!: remove unused CubicWebPyramidConfiguration

10.30 3.36.15 (2023-03-24)

10.30.1 Bug fixes

• testlib: define properly a generate_tzdatetime method with timezone (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/716)

10.30.2 Continuous integration

• avoid launching duplicated migractions tests

• clean CI of unused jobs

• disable can-i-merge

• don’t wait for tests to start QA jobs

• smoke_test: add timeout to request to avoid hanging up for too long

• smoke_test: handle ConnectionError situation

• test-cube-skeleton: ensure we use the same python version for smoke test than py3-* tests

320 Chapter 10. Changelog

https://forge.extranet.logilab.fr/open-source/yams/-/blob/branch/default/CHANGELOG.md#version-0480-2022-03-25
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/716
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/716

Cubicweb Documentation, Release 3.38.10

10.31 3.36.14 (2023-03-02)

10.31.1 Bug fixes

• sphinx-theme 1.0 breaks doc build

10.32 3.36.13 (2023-03-02)

10.32.1 Bug fixes

• make sure we only install yapps2-logilab by updating depencies

• tried to format a string while missing one formatting argument

10.33 3.36.12 (2023-01-17)

10.33.1 New features

• skeleton: remove format=pylint option from tox because it’s better without it

10.34 3.36.11 (2023-01-12)

10.34.1 Bug fixes

• avoid risking new cubes to install pre-release version of black

• formrenderers: use UStringIO instead of list to keep the same api as self.w (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/597)

• schema_exporters: Add missing description field for relations (e.g in_state) to schema exporter

10.35 3.36.10 (2022-11-15)

10.35.1 Bug fixes

• hook: correct a typo, self.warn doesn’t exist

10.31. 3.36.14 (2023-03-02) 321

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/597
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/597

Cubicweb Documentation, Release 3.38.10

10.36 3.36.9 (2022-10-04)

10.36.1 Bug fixes

• attr: when an entity is not existing always return None when fetching its attributes (#599)

• web.views: escape text from the undohistory view (#598)

10.36.2 Various changes

• delete unused translations from *.po files (#600)

• skeleton: add long_description_content_type in setup.py

10.37 3.36.8 (2022-09-22)

10.37.1 Bug fixes

• startup_views: raise AuthenticationError if anon access is disabled on StartupView (https://forge.extranet.
logilab.fr/cubicweb/cubicweb/-/issues/595)

10.38 3.36.7 (2022-09-14)

10.38.1 Bug fixes

• bookmark: do not escape the xaddrelation view from ajaxedit module

10.39 3.36.6 (2022-08-30)

10.39.1 Bug fixes

• pyramid: Redirect to the wanted URL after a successfully loggedin (to #584)

• xss: Ensure to use the xml_escape method on entity attributes

• perf: Restore initial performances by removing the uneccessary join

10.40 3.36.5 (2022-07-21)

10.40.1 Bug fixes

• schema_exporters: handle symmetrical relation in schema export. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/568)

322 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/595
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/595
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568

Cubicweb Documentation, Release 3.38.10

10.40.2 Various changes

• feat(markdown)!: update Mardown version to 3.4 and rewrite urlize extension (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/569)

10.41 3.36.4 (2022-07-13)

• merge 3.35.6 into 3.36

10.42 3.36.3 (2022-06-03)

10.42.1 Bug fixes

• pyramid: adapt TestApp.put_json method to CSRF

10.43 3.36.2 (2022-06-01)

10.43.1 New features

• pkg: upgrade version of waitress to 2.1.1 or more, for security reason. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/543)

10.43.2 Bug fixes

• base64.decodestring is deprecated and has been removed

• pyramid: adapt TestApp.post_json method to CSRF

• pyramid: try to get “/login” if “/” is forbidden

10.44 3.36.1 (2022-03-31)

10.44.1 Bug fixes

• rql2sql: upgrade RQL version to fix translation of NOT EXISTS(X eid Y) (#528)

• view: don’t escape html tags inside image previews

10.41. 3.36.4 (2022-07-13) 323

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/569
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/569
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/528

Cubicweb Documentation, Release 3.38.10

10.45 3.36.0 (2022-03-14)

10.45.1 New features

• markdown: load extra extensions to render tables (#515)

• schema_exporter: add a parameter to export schema as dict (#522)

10.45.2 Documentation

• fix sidebar table of content

• improve basic tutorial

• improve home and sidebar

• improve setup instructions

• improve skeleton readme

• set version number

• use relative links for static resources

• use right number of characters for titles

• use sphinx_book_theme

10.46 3.35.12 (2022-11-15)

10.46.1 Bug fixes

• hook: correct a typo, self.warn doesn’t exist

10.47 3.35.11 (2022-10-04)

10.47.1 Bug fixes

• attr: when an entity is not existing always return None when fetching its attributes (#599)

• web.views: escape text from the undohistory view (#598)

10.47.2 Various changes

• delete unused translations from *.po files (#600)

• skeleton: add long_description_content_type in setup.py

324 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/515
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/522

Cubicweb Documentation, Release 3.38.10

10.48 3.35.10 (2022-09-22)

10.48.1 Bug fixes

• startup_views: raise AuthenticationError if anon access is disabled on StartupView (https://forge.extranet.
logilab.fr/cubicweb/cubicweb/-/issues/595)

10.49 3.35.9 (2022-09-14)

10.49.1 Bug fixes

• bookmark: do not escape the xaddrelation view from ajaxedit module

10.50 3.35.8 (2022-08-30)

10.50.1 Bug fixes

• pyramid: Redirect to the wanted URL after a successfully loggedin (to #584)

• xss: Ensure to use the xml_escape method on entity attributes

• perf: Restore initial performances by removing the uneccessary join

10.51 3.35.7 (2022-07-21)

10.51.1 Bug fixes

• schema_exporters: handle symmetrical relation in schema export. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/568)

10.51.2 Various changes

• feat(markdown)!: update Mardown version to 3.4 and rewrite urlize extension (https://forge.extranet.logilab.fr/
cubicweb/cubicweb/-/issues/569)

10.52 3.35.6 (2022-07-13)

10.52.1 Various changes

• fix warnings of yams 0.48+ (3.35 requires <0.48)

10.48. 3.35.10 (2022-09-22) 325

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/595
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/595
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/568
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/569
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/569

Cubicweb Documentation, Release 3.38.10

10.53 3.35.5 (2022-07-13)

10.53.1 Bug fixes

• basecontrollers: str object have no more “decode” method since py3

• fix some warnings of yams 0.48+

• htmlwidgets: BoxLink rendering is broken

• server: remove a memory leak related to a file

• test: improve one related to CSRF

10.54 3.35.4 (2022-06-03)

10.54.1 Bug fixes

• pyramid: adapt TestApp.put_json method to CSRF

10.55 3.35.3 (2022-06-01)

10.55.1 New features

• pkg: upgrade version of waitress to 2.1.1 or more, for security reason. (https://forge.extranet.logilab.fr/cubicweb/
cubicweb/-/issues/543)

10.55.2 Bug fixes

• base64.decodestring is deprecated and has been removed

• pyramid: adapt TestApp.post_json method to CSRF

• pyramid: try to get “/login” if “/” is forbidden

10.56 3.35.2 (2022-03-31)

10.56.1 Bug fixes

• rql2sql: upgrade RQL version to fix translation of NOT EXISTS(X eid Y) (#528)

• view: don’t escape html tags inside image previews

326 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/543
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/528

Cubicweb Documentation, Release 3.38.10

10.57 3.35.1 (2022-03-09)

• avoid excaping cubicweb:loadurl’s value twice (to #523)

• don’t escape whole key=”value” attributes in TreeViewItemView (to #523)

• escape URLs passed as href attributes (to #523)

10.58 3.35 (2022-02-02)

10.58.1 Breaking changes

• deprecate RQLSuggestionsBuilder component ; users of this component should now use rqlsuggestions.
RQLSuggestionsBuilder instead. RQL bar completion behaviour can be changed by replacing the
“rql_suggest” ajax function. If this function isn’t registered, rql completion is disabled.

• remove RQLNoSuggestionsBuilder

• disable login using GET requests for security reasons

• web: remove support of old Internet Explorer versions: add_css no longer accepts iespec and ieonly argu-
ments

10.58.2 New features

• add a Dockerfile in the skeleton

• add a function for deleting entities faster

• config: add help messages in configuration files (all-in-one and sources)

• disable constraints checks on the DB upon deletion

• show cube name when there is a version conflict

• skeleton: add release-new in skeleton

• upgrade to yams 0.47

• content negociation: we now can use /<etype>/<rest_attr> route for content negociation, if rest_attr is
defined, the route /<etype>/<rest_attr> is disabled for content negociation in this situation

10.58.3 Bug fixes

• relation_type not existing in some conditions on RelationDefinition (ionDefinition.rtype has been deprecated in
yams in favor of relation_type)

10.57. 3.35.1 (2022-03-09) 327

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/open-source/yams/-/blob/branch/default/CHANGELOG.md#version-0470-2022-01-14

Cubicweb Documentation, Release 3.38.10

10.58.4 Continuous integration

• only collect warnings when running tests on the default branch (#489)

10.59 3.34.3 (2022-03-31)

10.59.1 Bug fixes

• rql2sql: upgrade RQL version to fix translation of NOT EXISTS(X eid Y) (#528)

• view: don’t escape html tags inside image previews

10.60 3.34.2 (2022-03-09)

10.60.1 Bug fixes

• avoid excaping cubicweb:loadurl’s value twice (to #523)

• don’t escape whole key=”value” attributes in TreeViewItemView (to #523)

• escape URLs passed as href attributes (to #523)

10.61 3.34.1 (2021-12-01)

10.61.1 Bug fixes

• server: correct RQL generation when we have function in ORDERBY (#466)

10.62 3.34.0 (2021-11-23)

10.62.1 Breaking changes

• Python 3.7 is now the minimum supported version of Python;

• test: settings = {"cubicweb.bwcompat": true} is now the default for test, please, check your test if they
are failing because of this;

• test: the qunit test driver has been removed;

• remove our deprecated and unused wsgi module;

• fix!(handler): rediction to login on cubicweb.AuthenticationError Previously we were sending a forbidden
response (403) with the login form as the html content, now we redirect (303) to the login form instead;

• rich <https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/348>, introduced in 3.33 for nice tracebacks,
had been removed <https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/434#note_93131>.

Since we updated rdflib to version 6, some packages like rdflib_jsonld are no longuer needed. Please, check your
dependencies if you have any issue.

328 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/489
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/528
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/466

Cubicweb Documentation, Release 3.38.10

10.62.2 New features

• add an export-schema command to cwctl

• csrf: add debug login when creating a new csrf token

• get_cleaned_form_data: add backward deprecated compatibility on req.form

• pyramid/test/ux: better debugging information when failing to get CSRF token

• security: implement inforcing form validation for POST arguments

• store: allow stores to be used as context manager (#446)

10.62.3 Bug fixes

• allow in Int as rest_attr

• build_doc: docutils version 0.18.0 breaks doc building

• doc8: indentation was using tabs in 3.32_reledit.rst

• ldap: upgrade to ldap3 (datetime, encode fix)

• p3-misc: missing fyzz modules for certains tests in spa2rql

• pyramid/test: webapp handles cookies for us, we don’t need to manually set them

• RDFLib: Remove rdflib-jsonld dependency and use RDFLib v6 jsonld builtin parser BREAKING CHANGE:
The RDFLib v6 does not support python 3.6 anymore. With this dependency, CubicWeb neither.

• reledit: Do not retrieve a list of schemata with _compute_ttypes

• remove qunit test stuff (#447)

• skeleton: use forge.extranet.logilab.fr as default web url for new cubes (#463)

• startup: Fix RQL query to take advantage of caching (#384)

• store csrf token during login

• test: make anonymous user creation hook tests pass (#452)

• utils: remove an useless space character

• views: remove unneeded xml_escape for primary titles

10.62.4 Continuous integration

• allow sonarqube to fails until we fix the internal url problem

• test: don’t wait lint to run tests (#445)

• use some gitlab-ci-templates (#455)

• uses buster-slim-pg11-firefox custom image for py3-auto-test job

• uses cubicweb/dockerfiles/can-i-merge image to optimize can-i-merge job

10.62. 3.34.0 (2021-11-23) 329

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/446
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/447
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/463
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/384
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/452
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/445
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/455

Cubicweb Documentation, Release 3.38.10

10.62.5 Various changes

• instance-config: add attributes for authenticated smtp

• pyramid.compat is deprecated and will be removed in Pyramid 2.0. The functionality is no longer necessary, as
Pyramid 2.0 drops support for Python 2.

• webconfig: remove an unused configuration option

10.63 3.33.13 (2022-03-09)

10.63.1 Bug fixes

• avoid excaping cubicweb:loadurl’s value twice (to #523)

• don’t escape whole key=”value” attributes in TreeViewItemView (to #523)

• escape URLs passed as href attributes (to #523)

10.64 3.33.12 (2021-12-01)

10.64.1 Bug fixes

• server: correct RQL generation when we have function in ORDERBY (#466)

10.65 3.33.11 (2021-11-17)

10.65.1 Bug fixes

• pkg: pin Yams version < 0.46.0

10.66 3.33.10 (2021-11-17)

• Removed allowed-http-host-headers configuration (which was a breaking change), since we don’t have this vul-
nerability in CubicWeb.

10.66.1 Various changes

• depend on sphinx >= 4.3

330 Chapter 10. Changelog

https://pyramid-pt-br.readthedocs.io/en/latest/api/compat.html
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/523
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/466

Cubicweb Documentation, Release 3.38.10

10.67 3.33.9 (2021-11-08)

10.67.1 Bug fixes

• views: remove an abusive escape (#457)

10.68 3.33.8 (2021-11-02)

10.68.1 Bug fixes

• build_doc: docutils version 0.18.0 breaks doc building (#443)

• pkg: don’t use pyparsing 3 since it’s not compatible with rdflib 5 (#441)

• pkg: pin pyramid_multiauth version to avoid compatibility issue with Pyramid 1 (#450)

10.69 3.33.7 (2021-10-12)

10.69.1 Bug fixes

• ldap: upgrade to ldap3 (datetime, encode fix)

• csrf: ensure that we have a csrf token returned on every requests

10.70 3.33.6 (2021-10-04)

10.70.1 Bug fixes

• facet: remove abusive escaping in facets views. (#394)

10.71 3.33.5 (2021-09-29)

10.71.1 Bug fixes

• backout “limit setuptools version to avoid issue with 2to3”

• use our package rdflib-jsonld-without-2to3, this is a fork of rdflib-jsonld with 2to3 usage removed, but which
still contains the whole package code unlike rdflib-jsonld 0.6.x.

• reledit: Do not retrieve a list of schemata with _compute_ttypes

10.67. 3.33.9 (2021-11-08) 331

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/457
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/443
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/441
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/450
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/394

Cubicweb Documentation, Release 3.38.10

10.72 3.33.4 (2021-09-24)

• don’t escape value in navigation components (#389)

• views: remove unneeded xml_escape for primary titles

• setup: keep rdflib-jsonld at version < 0.6.0

• setup: limit setuptools version to avoid issue with 2to3

10.73 3.33.3 (2021-09-14)

• upgrade rdflib-jsonld version to keep compatibility with setupools 58 and above

10.73.1 Bug fixes

• startup: Fix RQL query to take advantage of caching (#384)

10.74 3.33.2 (2021-09-02)

10.74.1 Documentation

• tuto: Fix path

10.75 3.33.1 (2021-08-31)

10.75.1 New features

• allowed-http-host-headers: automatically add default hostname to the allowed list on debug mode

• req: Add a “limit” parameter to RequestSessionBase.find

• req: Add exists for optimized search of at least one entity

• ux: better error message when a controller can’t be select

10.75.2 Bug fixes

• fyzz dep was missing for running certain tests

• only fyzz 0.2.2 is compatible with python 3

• typo: fix some mispellings

332 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/389
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/384

Cubicweb Documentation, Release 3.38.10

10.75.3 Documentation

• fix allowed-http-host-header label and quote from Django’s doc

10.75.4 Continuous integration

• integrate can-i-merge

10.75.5 Various changes

• 3.33: improve changelog quality

• fix(bwcompat)!: return a 400 instead of a 401 when failed to select a controller

• fix: allowed-http-host-headers has been released in 3.33 actually

• misc: fix rst syntax

10.76 3.33.0 (2021-08-03)

10.76.1 New features

• BREAKING security: introduce allowed-http-host-header against host attack (However, this is backed out in
3.33.10).

• add postgresql extra requires

• config: add ‘debug’ option in “[main]” of all-in-one.conf that does the same thing than “-D” in “cubicweb-ctl
pyramid”

• rich <https://github.com/willmcgugan/rich/>: to have nicer tracebacks, use rich.traceback
<https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/348> (removed in 3.34
<https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/434#note_93131>)

10.76.2 Bug fixes

• add default value for params argument in pyramid webtest post function (#350)

• csrf: give CSRF token when using /ajax route

• empty identification cookie on webapp.reset()

• pin rdflib < 6.0.0 to avoid compatibility issues

• rdf: graph.serialize needs to encode its content in utf-8

• security: change configuration [WEB]interface default value to 127.0.0.1

• views: Fix reledit errors when trying modify relation with multi subjects

10.76. 3.33.0 (2021-08-03) 333

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/350

Cubicweb Documentation, Release 3.38.10

10.76.3 Continuous integration

• use image from heptapod registry since r.intra was shut down

10.76.4 Various changes

• use open-source/gitlab-ci-templates in cube skeleton

• drop mention of MySQL and SQLServer support

• update cube installation procedure documentation

• remove *.spec from skeleton

10.77 3.32.14 (2021-12-01)

10.77.1 Bug fixes

• server: correct RQL generation when we have function in ORDERBY (#466)

10.78 3.32.13 (2021-11-17)

10.78.1 Bug fixes

• pkg: pin Yams version < 0.46.0

10.79 3.32.12 (2021-11-17)

10.79.1 Various changes

• depend on sphinx>=4.3

10.80 3.32.11 (2021-11-08)

10.80.1 Bug fixes

• views: remove an abusive escape (#457)

334 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/466
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/457

Cubicweb Documentation, Release 3.38.10

10.81 3.32.10 (2021-11-02)

10.81.1 Bug fixes

• build_doc: docutils version 0.18.0 breaks doc building (#443)

• pkg: don’t use pyparsing 3 since it’s not compatible with rdflib 5 (#441)

• pkg: pin pyramid_multiauth version to avoid compatibility issue with Pyramid 1 (#450)

10.82 3.32.9 (2021-10-12)

10.82.1 Bug fixes

• csrf: ensure that we have a csrf token returned on every requests

10.83 3.32.8 (2021-10-04)

10.83.1 Bug fixes

• facet: remove abusive escaping in facets views (#394)

10.84 3.32.7 (2021-09-29)

10.84.1 Bug fixes

• backout “limit setuptools version to avoid issue with 2to3”

• use our package rdflib-jsonld-without-2to3, this is a fork of rdflib-jsonld with 2to3 usage removed, but which
still contains the whole package code unlike rdflib-jsonld 0.6.x.

• reledit: Do not retrieve a list of schemata with _compute_ttypes

10.85 3.32.6 (2021-09-24)

10.85.1 Bug fixes

• don’t escape value in navigation components (#398)

• views: remove unneeded xml_escape for primary titles

• setup: keep rdflib-jsonld at version < 0.6.0

• setup: limit setuptools version to avoid issue with 2to3

10.81. 3.32.10 (2021-11-02) 335

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/443
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/441
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/450
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/394
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/389

Cubicweb Documentation, Release 3.38.10

10.86 3.32.5 (2021-09-14)

• upgrade rdflib-jsonld version to keep compatibility with setupools 58 and above

10.87 3.32.4 (2021-09-02)

10.87.1 Bug fixes

• do not use localhost.local has test domain, but keep the one already defined

10.88 3.32.3 (2021-08-31)

10.88.1 New features

• migration: add a migration script to warn about incompatibility of cwtags. (#367)

10.88.2 Bug fixes

• bringing back CubicWebServerTC and porting it to pyramid

• fix bad escaped values in web views

• pkg: since we added csrf mecanism, we need pyramid >= 1.9

• test_newcube were broken because we removed cubicweb-*.spec file but didn’t updated the tests

10.89 3.32.2 (2021-07-30)

10.89.1 New features

• use open-source/gitlab-ci-templates in cube skeleton

10.89.2 Bug fixes

• add default value for params argument of PyramidCWTest.webapp.post (#350)

• csrf: give CSRF token when using /ajax route

• empty identification cookie on webapp.reset()

• remove *.spec from skeleton

• views: Fix reledit errors when trying modify relation with multi subjects

336 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/367
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/350

Cubicweb Documentation, Release 3.38.10

10.90 3.32.1 (2021-07-23)

10.90.1 Bug fixes

• pin rdflib < 6.0.0 to avoid compatibility issues

10.90.2 Continuous integration

• use image from heptapod registry since r.intra was shut down

10.91 3.32.0 (2021-07-13)

10.91.1 Security, breaking changes

Protection against XSS

self.w API has been changed to automatically escape arguments used to format the string to mitigate XSS attacks.

This means that instead of writing:

self.w("some %s string %s" % (a, b))

You need to write:

self.w("some %s string %s", a, b)

And CubicWeb will escape all arguments given to self.w which are a and b here.

If for a specific reason (for example generating javascript) you don’t want to escape the arguments of self.w you can
use the escape kwarg argument of self.w like this:

self.w("some %s string %s", a, b, escape=False)

This is normally retrocompatible since self.w old API with only one argument still works (but you shouldn’t use it
anymore) but if you have been giving a custom function as self.w you’ll need to adapt the API of this function to
match self.w new API which is:

def w(self, string, *args, **kwargs, escape=False): ...

Also note that UStringIO.write function has also been modified to be compatible with self.w new API (so if you
are using it you won’t need to port this code).

10.90. 3.32.1 (2021-07-23) 337

Cubicweb Documentation, Release 3.38.10

CSRF protection

A CSRF protection mechanism has been integrated in CubicWeb using Pyramid CSRF built-in protection. Regarding
breaking changes:

• Cubicweb now only works with pyramid
• if you are only using cubicweb “web” without ajax and you have been doing advanced modification at the session

management level this shouldn’t break anything for you

• if you are doing POST/PUT/DELETE. . . requests using AJAX, you need to adapt your code to send the
csrf_token otherwise all you requests will be denied. This is explained in the AJAX section of the documen-
tation: csrf_protection

The whole mechanism is explained in the documentation: csrf_protection

10.91.2 Other breaking changes

We decided to stop releasing cubicweb as debian packages that we used on multi-purpose servers in favor of docker
images that we run with docker-compose or on kubernetes. Thanks for all the fishes.

10.91.3 New features

• add a component to disable RQL suggestions: cubicweb.web.views.magicsearch.
RQLNoSuggestionsBuilder

10.91.4 Bug fixes

• [reledit] display reledit for a relation if some conditions are satisfied ([1] the relation don’t have rqlexpr permis-
sions and can be deleted [2] at least one of related entites can be deleted)

• pyramid/predicates: avoid to show an error without a session connection

• be sure db-statement-timeout is not None

• correctly transform cubicweb.web.RemoteCallFailed into pyramid corresponding exceptions, this allow to prop-
agate the correct content type (for example for json exceptions)

• “cubicweb-ctl list” now supports multiple dependencies constraints

10.91.5 Various changes

• fix error cases when internationalizable is not defined on rdef

• improve docstring in web.views.basecontrollers

338 Chapter 10. Changelog

3.32_reledit

Cubicweb Documentation, Release 3.38.10

10.91.6 Continuous integration

• coverage: gitlab-ci is able to read the coverage report we produce

• disable from-forge for now since we aren’t using them

• fix path to coverage-*.xml for non-reports artifacts

• flake8: integrate flake8-gl-codeclimate for QA reports

• integrate junit reports style for tests errors in gitlab

• optimisation: allow to interrupt started jobs that can be replaced

• pytest-html: generate self contained html file for easier test repport browsing

• trigger py3-* jobs on tox.ini/.gitlab-ci.yml/requirements modifications

• use gitlab readthedocs integration

10.91.7 Developer experience

• using black on the whole project o/ (thx for hg format-source)

• debug/ux: display traceback of stderr when exception in addition of the html page

• testing: activate debug mode during testing

• ux: display on stdout the requests made to the server like nginx

• ux: display traceback on stderr on request failure

• ux: logger.info for selected view by ViewController

10.92 3.31.9 (2021-11-17)

10.92.1 Bug fixes

• pkg: pin Yams version < 0.46.0

10.93 3.31.8 (2021-11-17)

10.93.1 Various changes

• depend on sphinx >= 4.3

10.92. 3.31.9 (2021-11-17) 339

Cubicweb Documentation, Release 3.38.10

10.94 3.31.7 (2021-11-02)

10.94.1 Bug fixes

• build_doc: docutils version 0.18.0 breaks doc building (#443)

• pkg: don’t use pyparsing 3 since it’s not compatible with rdflib 5. (#441)

• pkg: pin pyramid_multiauth version to avoid compatibility issue with Pyramid 1 (#450)

10.95 3.31.6 (2021-09-28)

10.95.1 Various changes

• backout “limit setuptools version to avoid issue with 2to3”

• use our package rdflib-jsonld-without-2to3, this is a fork of rdflib-jsonld with 2to3 usage removed, but which
still contains the whole package code unlike rdflib-jsonld 0.6.x.

10.96 3.31.5 (2021-09-24)

10.96.1 Bug fixes

• setup: keep rdflib-jsonld at version < 0.6.0

• setup: limit setuptools version to avoid issue with 2to3

10.97 3.31.4 (2021-09-14)

• upgrade rdflib-jsonld version to keep compatibility with setupools 58 and above

10.98 3.31.3 (2021-07-23)

10.98.1 Bug fixes

• pin rdflib < 6.0.0 to avoid compatibility issues

10.98.2 Continuous integration

• use image from heptapod registry since r.intra was shut down

340 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/443
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/441
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/450

Cubicweb Documentation, Release 3.38.10

10.99 3.31.2 (2021-07-19)

10.99.1 Bug fixes

• do not consume a lot of time to collect debug data if no one is listening on debug channels

• fix incomplete merge of previous versions (brings back write_front)

10.100 3.31.1 (2021-05-18)

10.100.1 Revert

• backed out changeset bcb633bd791d, don’t give event to notify_on_commit Notification are done using Oper-
ation, and Operation do not have a event attribute, because they can be used for several event. Moreover, this
commit (bcb633bd791d) changed the prototype of the notify_on_commit without giving the right event to the
Operation (which is a singleton).

10.101 3.31 (2021-05-04)

10.101.1 New features

• handle same_site cookies configuration in pyramid.ini

• order: add support for order by NULLS LAST and NULLS FIRST

• improve default cubicweb skeleton

10.101.2 Bug fixes

• create anonymous user at runtime if it doesn’t exist already.

• dbcreate: don’t ask confirmation to create schema in automatic

• hooks/notification: BREAKING CHANGE correctly initialize operation with event attribute

• RQLExpression: performance issue on RQLExpressions using EXISTS() BREAKING CHANGE: explicitly use
EXISTS in RQLExpression for permissions

• fix some security issues

10.101.3 Documentation

• tuto: add structure of “enhance views” museum tutorial part.

• tuto: redact “React in a CubicWeb view” museum tuto part.

• tuto: rename cubicweb-tuto to tuto, avoiding confusion with cubicweb_tuto

10.99. 3.31.2 (2021-07-19) 341

Cubicweb Documentation, Release 3.38.10

10.101.4 Continuous integration

• gitlab-ci: set expiration delay to 2 weeks for artifacts

• image is no longer a global keyword, use default

• rename jobs names to match global conventions

• test skeleton own tox in the CI

10.101.5 Various changes

• cleanup: Remove migrations for 3.21 and less

• py3: Rename raw_input (that does not exist anymore) to input

• tests: create a .nobackup file in the data/database directory (#298)

10.102 3.30.1 (2021-07-23)

10.102.1 Bug fixes

• pin rdflib < 6.0.0 to avoid compatibility issues

10.102.2 Continuous integration

• use image from heptapod registry since r.intra was shut down

10.103 3.30.0 (2021-03-16)

10.103.1 New features

• config: read required variables from environment (#85)

• db-create: add drop option to control database deletion (#202) BREAKING CHANGE: cubicweb-ctl db-create
no more drops the db in

• massive store: add an option to allow stores not to drop constraints (#219)

• pyramid-ctl: add “nb-threads” parameter to cubicweb-ctl pyramid (#119)

• urlpublish: add empty_rset_raises_404 flag on rql rewrite urls (#199)

• add script_attribute to add_js function (#210)

• cubicweb/cwconfig: authenticated SMTP outgoing email

• database/exception: include the query information in database error for better debuging

• upgrade Logilab’s dependencies to last versions

• web: only set “Vary: Accept-Language” when we translate something (#224)

342 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/298
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/85
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/202
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/219
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/119
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/199
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/210
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/224

Cubicweb Documentation, Release 3.38.10

10.103.2 Bug fixes

• rql2sql: properly handle date and datetime operations with SQLite (#109)

• rql: make the rql completion working again

• rql: refactor GROUP_CONCAT so that it handles NULL values

• catch authentication exception

• ci: manually remove the .tox/doc directory (#206)

• ci: use **/*.py to match all python files

• ci: recreate doc environment from scratch (#206)

• cwgettext: missing local module

• db-create: don’t force to use –drop if there is no existing db.

• deprecated: logilab.common.deprecated has been renamed to callable_deprecated

• deps: we are not yet compatible with pyramid 2.0

• migractions: don’t use notification hooks during postcreate

• py3: we still have some unicode() arround

• repo_cnx: Catch OperationalError during repo_cnx (#215)

• skeleton: add gitlab-ci in skeleton manifest

• skeleton: make the skeleton black compliant

• skip a wdoc test when doctuils is not available

• typo: drop_db instead of drop_pd

• urlpublisher: raise a 404 when a URL rewrite with rql has no rset (#199)

• UX when migractions failed to get its connection

• migractions: don’t commit in the middle of drop_cube

• views: fix possible UnboundLocalError in ErrorView

• server: Set language of connection in all cases (#87)

10.103.3 Documentation

• deploy: add a Docker section in deployment

• deploy: Update kubernetes deploy

• deploy: Update uwsgi deployment

• deploy: add section ref for kubernetes section

• include api documentation

• mention weekly meeting in matrix

• Add link to migration and remove FIXME

• add more links in the index and capitalize entries (#185)

• all-in-one.conf: add link in index.rst

10.103. 3.30.0 (2021-03-16) 343

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/109
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/206
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/206
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/215
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/199
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/87
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/185

Cubicweb Documentation, Release 3.38.10

• dataimport: remove SQLGenObjectStore description and add MassiveObjectStore.

• index: remove “skeleton”, since it’s already explain in “layout”

• licence: automatically set licence info in setup.py template (#94)

• move (and fix) apache documentation to the deply section

• Remove SQLSERVER

• rql: replace COMMA_JOIN by GROUP_CONCAT (#259)

• tutorials: correct a dead link.

• tutorials: add a link to museum demo source code, and correct a typo.

• tutorials: add introduction and structure of the museum tutorial.

• tutorials: redaction of “data-management/import” part of the museum tuto.

• tutorials: redaction of “getting started” part.

• tutorials: reword

10.103.4 Continuous integration

• uses gitlab-ci ‘rules:’

• integrate yamllint

• simplify rule:changes

• Use workflow to avoid duplicated pipelines (see https://docs.gitlab.com/ee/ci/yaml/
#switch-between-branch-pipelines-and-merge-request-pipelines)

• do not run sonaqube and deploy the doc when triggered by other project

• fix: also monitore requirements/setup.py changes for triggering the pipelines updated

10.103.5 Various changes

• remove statsd (closes #39) BREAKING CHANGE

• remove web.cors in favor of wsgicors with pyramid

• server/migractions: simplify the Migration Handler entry point

• server: replace utils.QueryCache with cachetools.LFUCache

• Silent yams warning (first rdef selection from an ambiguous rtype)

• Very minor improvements of cubicweb/server/repository.py

• views: Make JsonMixIn.wdata method usable with non-web connections

344 Chapter 10. Changelog

https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/94
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/259
https://docs.gitlab.com/ee/ci/yaml/#switch-between-branch-pipelines-and-merge-request-pipelines
https://docs.gitlab.com/ee/ci/yaml/#switch-between-branch-pipelines-and-merge-request-pipelines
https://forge.extranet.logilab.fr/cubicweb/cubicweb/-/issues/39

Cubicweb Documentation, Release 3.38.10

10.104 3.29.6 (2021-10-07)

10.104.1 New features

• Allow authentication on SMTP for outgoing emails. This feature was present in 3.28, but got lost during merge.

10.105 3.29

10.105.1 New features

• we started to reorganize the documentation, in particular the index, this work will continue with the next releases.
Thus, some chapters are still missing

• ext/markdown: add urlize extension to auto link url in markdown documents

10.105.2 Bug fixes

• .gitlab-ci.yaml.tmpl should be named .gitlab-ci.yml.tmpl for heptapod

10.105.3 Documentation

• Change data model link to use the definition from YAMS

• reorganize the TOC

• fix a few dead links

• add explanation on site_cubicweb.py

• update cube layout documentation

• add more explanations to what is a cube

• pooler: bad option name for the connections pooler

• Change data model link to use the definition from YAMS

10.105.4 Continuous integration

• build the documentation on gitlab pages

10.105.5 Various changes

• DeprecatedWarning: [logilab.common.deprecation] moved has been renamed and is deprecated, uses
callable_moved instead

• add pipeline badge and shields with stats from pypi & docker

10.104. 3.29.6 (2021-10-07) 345

Cubicweb Documentation, Release 3.38.10

10.106 3.28.2

10.106.1 Fixed

• re-introduce cubicweb.pyramid.resources.EntityResource/ETypeResource

• re-introduce cubicweb.pyramid.predicates.MatchIsETypePredicate

• both were still needed for several cubes

10.107 3.28.1

10.107.1 Fixed

• python 3.8 compatibility: base64 encodestring has been removed, use encodebytes

10.108 3.28

The big highlights of this release are:

• CubicWeb now requires python >=3.6
• a new dynamic database connections pooler to replace the old static one

• a big upgrade in our CI workflow both for tests and documentations

• RDF generations when rdf mimetype in Accept HTTP headers

• rql resultset now stores selections variables names for RQL select queries, this will allow to build better tools

10.108.1 Added

• [pyramid]`has_cw_permission` pyramid predicates added for routes and view

• The database pooler is now dynamic. New connections are opened when needed and closed after a configurable
period of time. This can be configured through connections-pooler-max-size (default 0, unlimited), connections-
pooler-min-size (default 0), and connections-pooler-idle-timeout (default 600 seconds). The old configuration
connections-pooler-size has been dropped.

• [pyramid-debugtoolbar] make SQL and RQL tables sortable

• [RQL]Resulset now stores selected variables for RQL select queries

• pyramid: add routes /{eid} and /{etype}/{eid} to return RDF when rdf mimetype in Accept HTTP headers

• entities: simplify rdf generation and add a generic rdf adapter

• web.views: add Link alternate in HTTP response header in HTML view

• Black and Mypy config in tox.ini file in new cube skeleton

• Gitlab CI config file in new cube skeleton

346 Chapter 10. Changelog

Cubicweb Documentation, Release 3.38.10

10.108.2 Changed

• CubicWeb now requires python >=3.6

• CI now test Cubicweb against latest unreleased public commits of its dependencies

• CI now rebuilds documentation after tests

10.108.3 Deprecated

• Class cubicweb.view.EntityAdapter was moved to cubicweb.entity.EntityAdapter, a deprecation warning is in
place, but please update your source code accordingly

10.108.4 Removed

• Support for plpython has been dropped

• RDFnquadsView (Breaking Change)

10.108.5 Fixed

• Fix various tests in the CI

• Use SchemaLoader instead of pyfilereader

• [pyramid-debugtoolbar] remove CW controller panel rendering when no controller got collected

• [basecontroller] link tags in the header can only be added on entities

• add a __contains__ method to dict_protocol_catcher to avoid breaking on “in”

Thanks to our contributors: Simon Chabot, Laurent Peuch, Nicolas Chauvat, Philippe Pepiot, Élodie Thieblin, François
FERRY, Fabien Amarger, Laurent Wouters, Guillaume Vandevelde.

10.109 3.27 (31 January 2020)

10.109.1 New features

• Tests can now be run concurrently across multiple processes. You can use pytest-xdist for that. For tests using
PostgresApptestConfiguration you should be aware that startpgcluster() can’t run concurrently. Workaround is
to call pytest with --dist=loadfile to use a single test process per test module or use an existing database
cluster and set db-host and db-port of devtools.DEFAULT_PSQL_SOURCES['system'] accordingly.

• on cubicweb-ctl create and cubicweb-ctl pyramid, if it doesn’t already exist in the instance directory, the pyra-
mid.ini file will be generated with the needed secrets.

• add a –pdb flag to all cubicweb-ctl command to launch (i)pdb if an exception occurs during a command execution.

• the –loglevel and –dbglevel flags are available for all cubicweb-ctl instance commands (and not only the pyramid
one)

• following “only in foreground” behavior all commands logs to stdout by default from now on. To still log to a
file pass log_to_file=True to CubicWebConfiguration.config_for

• add a new migration function update_bfss_path(old_path, new_path) to update the path in Bytes File-System
Storage (bfss).

10.109. 3.27 (31 January 2020) 347

https://github.com/pytest-dev/pytest-xdist

Cubicweb Documentation, Release 3.38.10

• on every request display request path and selected controller in CLI

• migration interactive mode improvements:

– when an exception occurs, display the full traceback instead of only the exception

– on migration p(db) choice, launch ipdb if it’s installed

– on migration p(db) choice, give the traceback to pdb if it’s available, this mean that the (i)pdb interactive
session will be on the stack of the exception instead of being on the stack where pdb is launched which
will allow the user to access all the relevant context of the exception which otherwise is lost

• on DBG_SQL and/or DBG_RQL, if pygments is installed, syntax highlight sql/rql debug output

• allow to specify the instance id for any instance command using the CW_INSTANCE global variable instead of
or giving it as a cli argument

• when debugmode is activated (‘-D/–debug’ on the pyramid command for example), the HTML generated by CW
will contains new tags that will indicate by which object in the code it has been generated and in which line of
which source code. For example:

<div
cubicweb-generated-by="cubicweb.web.views.basetemplates.TheMainTemplate"
cubicweb-from-source="/home/user/code/logilab/cubicweb/cubicweb/web/views/

→˓basetemplates.py:161"
id="contentmain">
<h1

cubicweb-generated-by="cubicweb.web.views.basetemplates.TheMainTemplate"
cubicweb-from-source="/home/user/code/logilab/cubicweb/cubicweb/view.py:136">
unset title

</h1>
[...]

</div>

While this hasn’t been done yet, this feature is an open path for building dynamic tools that can help inspect the page.

• a new debug channels mechanism has been added, you can subscribe to one of those channels in your python
code to build debug tools for example (the pyramid custom panels are built using that) and you will receive
a datastructure (a dict) containing related information. The available channels are: controller, rql, sql, vreg,
registry_decisions

• add a new ‘-t/–toolbar’ option the pyramid command to activate the pyramid debugtoolbar

• a series of pyramid debugtoolbar panels specifically made for CW, see bellow

10.109.2 Pyramid debugtoolbar and custom panel

The pyramid debugtoolbar is now integrated into CubicWeb during the development phase when you use the ‘pyramid’
command. To activate it you need to pass the ‘-t/–toolbar’ argument to the ‘pyramid’ command.

In addition, a series of custom panels specifically done for CW are now available, they display useful information for
the development and the debugging of each page. The available panels are:

• a general panel which contains the selected controller, the current settings and useful links screenshot

• a panel listing all decisions taken in registry for building this page screenshot

• a panel listing the content of the vreg registries screenshot

• a panel listing all the RQL queries made during a request screenshot

348 Chapter 10. Changelog

../../_images/debugtoolbar_general_panel.png
../../_images/debugtoolbar_registry_decisions_panel.png
../../_images/debugtoolbar_registry_content_panel.png
../../_images/debugtoolbar_rql_panel.png

Cubicweb Documentation, Release 3.38.10

• a panel listing all the SQL queries made during a request screenshot

Furthermore, in all those panels, next to each object/class/function/method a link to display its source code is available
(shown as ‘[source]’ screenshot) and also every file path shown is a traceback is also a link to display the corresponding
file (screenshot). For example: screenshot.

10.109.3 Backwards incompatible changes

• Standardization on the way to launch a cubicweb instance, from now on the only way to do that will be the used
the pyramid command. Therefore:

– cubicweb-ctl commands “start”, “stop”, “restart”, “reload” and “status” have been removed because
they relied on the Twisted web server backend that is no longer maintained nor working with Python 3.

– Twisted web server support has been removed.

– cubicweb-ctl wsgi has also been removed.

• Support for legacy cubes (in the ‘cubes’ python namespace) has been dropped. Use of environment variables
CW_CUBES_PATH and CUBES_DIR is removed.

• Python 2 support has been dropped.

• Exceptions in notification hooks aren’t catched-all anymore during tests so one can expect tests that seem to pass
(but were actually silently failing) to fail now.

• All “cubicweb-ctl” command only accept one instance argument from now one (instead of 0 to n)

• ‘pyramid’ command will always run in the foreground now, by consequence the option --no-daemon has been
removed.

• DBG_MS flag has been removed since it is not used anymore

• transactions db logs where displayed using the logging (debug/info/warning. . .) mechanism, now it is only dis-
played if the corresponding DBG_OPS flag is used

• backward python 2 compatible code for scheduler class has been removed from cubicweb.server.utils.
If you get an import error when doing from cubicweb.server.utils import scheduler replace it with
from sched import scheduler.

10.109.4 Deprecated code drops

Most code deprecated until version 3.25 has been dropped.

10.110 3.26 (1 February 2018)

10.110.1 New features

• For pyramid instance configuration kind, logging is not handled anymore by CubicWeb but should be config-
ured through development.ini file following https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/
logging.html.

10.110. 3.26 (1 February 2018) 349

../../_images/debugtoolbar_sql_panel.png
../../_images/debugtoolbar_show_source_link.png
../../_images/debugtoolbar_traceback_source_link.png
../../_images/debugtoolbar_show_source.png
https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html
https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/logging.html

Cubicweb Documentation, Release 3.38.10

10.110.2 Backwards incompatible changes

• CubicWebConfiguration method ‘shared_dir’ got dropped.

10.111 3.25 (14 April 2017)

10.111.1 New features

• A new option connections-pooler-enabled (default yes) has been added. This allow to switch off internal con-
nection pooling for use with others poolers such as pgbouncer.

• In deleteconf view (confirmation before deletion), the list of first-level composite objects that would be deleted
along with the primary entity is displayed (01eeea97e549).

• The cubicweb.pyramid module now provides a Paste application factory registered as an entry point named
pyramid_main and that can be used to run a Pyramid WSGI application bound to a CubicWeb repository.

• A new configuration type pyramid has been added to create CubicWeb’s instances (through cubicweb-ctl
create -c pyramid <basecube> <appid>). This configuration bootstraps a CubicWeb instance that is es-
sentially a repository plus the minimal setup to run a Pyramid WSGI application on top of it. Noticeably, it does
not ship all web configuration but rather relies on configuration declared in a development.ini file for any
Pyramid application.

• A new way to declare workflows as simple data structure (dict/list) has been introduced. Respective utility
functions live in cubicweb.wfutils module. This handles both the creation and migration of workflows.

• A new IDublinCore adapter has been introduced to control the generation of Dublin Core metadata that are used
in several base views.

• It is now possible to derive rtags using their derive method (0849a5eb57b8). Derived rtags keep a reference to
the original rtag and only hold custom rules, allowing changes which are done in the original rtag after derivation
to be still considered.

• A new cubicweb-ctl scheduler <appid> command has been introduced to run background and periodic
tasks of the repository (previously called looping tasks). In a production environment, a process with this com-
mand should be run alongside with a WSGI server process (possibly running multiple processes itself).

10.111.2 Backwards incompatible changes

• As a consequence of the replacement of the old looping tasks manager by a scheduler, all cubicweb-ctl’s “start”
commands (i.e. start, pyramid, wsgi) do not start repository looping tasks manager anymore, nor do they start
the scheduler. Site administrators are thus expected to start this scheduler as a separate process. Also, registering
looping tasks (i.e. calling repo.looping_tasks()) is a no-op when the repository has no scheduler set; a
warning is issued in such cases. Application developers may rely on repository’s has_scheduler method to
determine if they should register a looping task or not.

• In cubicweb.pyramid, function make_cubicweb_application got renamed into config_from_cwconfig
(950ce7d9f642).

• Several cleanups in repository’s session management have been conducted resulting from changes introduced in
3.19 release. Among others, the cubicweb.server.session.Session class has been dropped, and request
session attribute is now tight to a web session whose implementation depends on the front-end used (twisted
or pyramid). Hence this attribute should not be accessed from “repository side” code (e.g. hooks or operations)
and has lost some of his former attributes like repo which used to reference the repository instance. Due to this,
you don’t have anymore access to session’s data through the connection, which leds to deprecation of the data
attribute and removal of get_shared_data and set_shared_data methods which are deprecated since 3.19.

350 Chapter 10. Changelog

https://pgbouncer.github.io/

Cubicweb Documentation, Release 3.38.10

• Support for ‘https-url’ configuration option has been removed (4516c3956d46).

• The next_tabindex method of request class has been removed (011730a4af73). This include the removal of
settabindex from the FieldWidget class init method.

• The cubicweb.hook.logstats.start hook was dropped because it’s looping task would not be run in a web instance
(see first point about repository scheduler).

• uicfg rules to hide the opposite relation of inlined form are not anymore automatically added, because this was
actually done randomly and so not reliable, so you’ll have to add them manually:

autoform_section.tag_subject_of(('CWUser', 'use_email', 'EmailAddress'),
'main', 'inlined')

autoform_section.tag_object_of(('CWUser', 'use_email', 'EmailAddress'),
'inlined', 'hidden')

10.112 3.24 (2 November 2016)

10.112.1 New features

• Various bits of a CubicWeb application configuration can be now be overridden through environments variables
matching configuration option names prefixed by CW_ (for instance CW_BASE_URL).

• Cubes are now standard Python packages named as cubicweb_<cubename>. They are not anymore installed in
<prefix>/share/cubicweb/cubes. Their discovery by CubicWeb is handled by a new setuptools entry point
cubicweb.cubes. A backward compatibility layer is kept for “legacy” cubes.

• Pyramid support made it into CubicWeb core. Applications that use it should now declare the cubicweb[pyramid]
dependency instead of cubicweb-pyramid.

• New NullStore class in cubicweb.dataimport.stores as new base class for every store, and allowing to test
your dataimport chain without actually importing anything.

10.112.2 Major changes

There has been several important changes to the core internals of CubicWeb:

• Dropped asource and extid columns from the entities table as well as the index on the type column, for a sensible
optimization on both massive data insertion and database size / index rebuilding.

• Dropped the moved_entities table and related mecanism to remember that an entity has been moved from a source
to the system database - this is now the responsability of source’s parser to detect this (usually by remembering
its original external id as cwuri).

• Dropped the original ‘give me an eid for this extid, but call me back on another line if it has to be created’
mecanism on which the cwxmlparser was relying, in favor of parsers using the dataimport API. This includes
dropping the cwxmlparser. If you’re using it, you’ll have to write a specific parser, examples to come.

• Dropped source mapping handling (schema, views, logic) with its client the cwxmlparser. This is not worth
the burden, specific parsers should be preferred.

The above changes lead to the following API changes:

• req.entity_metas(eid) doesn’t return anymore a ‘type’ nor ‘source’ keys, use req.entity_type(eid) instead or
‘cw_source’ relation to get those information,

• deprecated entity.cw_metainformation(), which doesn’t return anymore it’s ‘source’ key,

10.112. 3.24 (2 November 2016) 351

Cubicweb Documentation, Release 3.38.10

• dropped repository.type_and_source_from_eid(eid, cnx), repository.extid2eid(. . .) and
source.eid_type_source(cnx, eid),

• dropped source.support_entity(etype) and source.support_relation(rtype),

• dropped ‘cw_source’ key from default JSON representation of an entity,

• dropped source_uris() and handle_deletion(. . .) method from datafeed parser base class, deletion of entities is
now the responsability of specific implementation (see ldapparser for example),

• entities from external source are always displayed in the UI with a link to the local entity, not the original one
simplifying entity.absolute_url() implementation and allowing to drop use_ext_eid argument of entity.rest_path()
(though it’s still supported for backward compat).

10.112.3 Changes to the massive store

Several improvments have been done to cubicweb.dataimport.massive_store, with among the more important
ones:

• Extended store API to provide more control to end-users: fill_entities_table, fill_relation_table,
fill_meta_relation_table.

• Dropped on_commit / on_rollback arguments of the constructor.

• Use a slave specific temporary table for entities insertion as for relations (should improve concurrency when
using in master/slaves mode).

• Delay dropping of constraint to the finish method, avoiding performance problem that was occuring because
indexes were dropped at store creation time.

• Consider the given metadata generator when looking for which metadata tables should have their constraints
dropped.

• Don’t drop index on entities.eid, it’s too costly to rebuild on database with some million of entities.

10.113 3.23 (24 June 2016)

10.113.1 New features

• Python 3.x support in CubicWeb itself is now complete, except for the twisted package (since Twisted does
not completely support Python 3.x itself). The skeleton for new cube should also be Python 3 compatible, in
particular its setup.py got updated.

• The source-sync command can now synchronize all sources in the database, if no <source> argument is provided.

• Datafeed source synchronization is now asynchronous when requested from user interface.

• Most indexes and constraints will be rebuilt during the migration, because they are now named after a md5 hash
to control the name’s size.

• Index are renamed upon renaming of an entity type, so they are still correctly tracked.

• A new db-check-index command is added to cubicweb-ctl, to display the differences between the indexes in the
database and those expected by the schema. It’s recommended to run this command after the migration to 3.23
and to adjust things manually for cases that are not easily handled by the migration script, such as indexes of
entity types that have been renamed. It should be mostly about dropping extra indexes.

• Deprecated MetaGenerator in favor of slightly adapted API in MetadataGenerator (more consistent, giving more
control to sub-classes and suitable for usage with the MassiveObjectStore)

352 Chapter 10. Changelog

Cubicweb Documentation, Release 3.38.10

• Major cleanups of the MassiveObjectStore and its PGHelper companion class:

– dropped a bunch of unnecessary / unused attributes

– refactored / renamed internal methods

– added support for a metadata generator, the now recommended way to control metadata generation

• Deprecated SQLGenObjectStore, MassiveObjectStore should be used instead.

10.113.2 Backwards-incompatible changes

• Generative tests à la logilab-common are not supported anymore in CubicWebTC. It is advised to use the subtests
API (available on CubicWebTC either from the standard library as of Python 3.4 or through unittest2 package
otherwise).

• CubicWebTC’s set_description method (comming from logilab.common.testlib.TestCase) is no longer available.

10.113.3 Development

When installed within a virtualenv, CubicWeb will look for instances data as in usermode by default, that is in $HOME/
etc/cubicweb.d, as opposed to $VIRTUAL_ENV/etc/cubicweb.d previously. To restore this behavior, explicitly
set CW_MODE to system. Alternatively (and preferably), the CW_INSTANCES_DIR environment variables may be used
to specify instances data location.

10.114 3.22 (4 January 2016)

10.114.1 New features

• a huge amount of changes were done towards python 3.x support (as yet incomplete). This introduces a new
dependency on six, to handle python2/python3 compatibility.

• new cubicweb.dataimport.massive_store module, a postgresql-specific store using the COPY statement to ac-
celerate massive data imports. This functionality was previously part of cubicweb-dataio (there are some API
differences with that previous version, however).

• cubes custom sql scripts are executed before creating tables. This allows them to create new types or extensions.

• the ejsonexport view can be specialized using the new ISerializable entity adapter. By default, it will
return an entity’s (non-Bytes and non-Password) attributes plus the special cw_etype and cw_source keys.

• cubes that define custom final types are now handled by the add_cube migration command.

• synchronization of external sources can be triggered from the web interface by suitably privileged users with a
new cw.source-sync action.

10.114. 3.22 (4 January 2016) 353

https://docs.python.org/3/library/unittest.html#distinguishing-test-iterations-using-subtests

Cubicweb Documentation, Release 3.38.10

10.114.2 User-visible changes

• the ldapfeed source now depends on the ldap3 module instead of python-ldap.

• replies don’t get an Expires header by default. However when they do, they also get a coherent Cache-Control.

• data files are regenerated at each request, they are no longer cached by cubicweb.web.PropertySheet. Re-
quests for data files missing the instance hash are handled with a redirection instead of a direct reply, to allow
correct cache-related reply headers.

10.114.3 API changes

• config.repository() creates a new Repository object each time, instead of returning a cached object.
WARNING: this may cause unexpected issues if several repositories end up being used.

• migration scripts, as well as other scripts executed by cubicweb-ctl shell, are loaded with the print_function
flag enabled (for backwards compatibility, if that fails they are re-loaded without that flag)

• the cw_fti_index_rql_queries method on entity classes is replaced by cw_fti_index_rql_limit, a gen-
erator which yields ResultSet objects containing entities to be indexed. By default, entities are returned 1000
at a time.

• IDownloadableAdapter API is clarified: download_url, download_content_type and
download_file_name return unicode objects, download_data returns bytes.

• the Repository.extid2eid() entry point for external sources is deprecated. Imports should use one of the
stores from the cubicweb.dataimport package instead.

• the cubicweb.repoapi.get_repository() function’s uri argument should no longer be used.

• the generic datafeed xml parser is deprecated in favor of the “store” API introduced in cubicweb 3.21.

• the session manager lives in the sessions registry instead of components.

• TZDatetime attributes are returned as timezone-aware python datetime objects. WARNING: this will break
client applications that compare or use arithmetic involving timezone-naive datetime objects.

• creation_date and modification_date attributes for all entities are now timezone-aware (TZDatetime) instead of
localtime (Datetime). More generally, the Datetime type should be considered as deprecated.

10.114.4 Deprecated code drops

• the cubicweb.server.hooksmanager module was removed

• the Repository.pinfo() method was removed

• the cubicweb.utils.SizeConstrainedList class was removed

• the ‘startorder’ file in configuration directory is no longer honored

354 Chapter 10. Changelog

Cubicweb Documentation, Release 3.38.10

10.115 3.21 (10 July 2015)

10.115.1 New features

• the datadir-url configuration option lets one choose where static data files are served (instead of the default
${base-url}/data/)

• some integrity checking that was previously implemented in Python was moved to the SQL backend. This
includes some constraints, and referential integrity. Some consequences are that:

– disabling integrity hooks no longer disables those checks

– upgrades that modify constraints will fail when running on sqlite (but upgrades aren’t supported on sqlite
anyway)

Note: as of 3.21.0, the upgrade script only works on PostgreSQL. The migration for SQLServer will be added
in a future bugfix release.

• for easier instance monitoring, cubicweb can regularly dump some statistics (basically those exposed by the ‘info’
and ‘gc’ views) in json format to a file

10.115.2 User-visible changes

• the use of fckeditor for text form fields is disabled by default, to re-enable it simply install the cubicweb-ckeditor
cube (then add_cude(‘ckeditor’) in a migration or in the shell)

• the ‘https-deny-anonymous’ configuration setting no longer exists

10.115.3 Code movement

The cubicweb.web.views.timeline module (providing the timeline-json, timeline and static-timeline views) has moved
to a standalone cube

10.115.4 API changes

• req.set_cookie’s “expires” argument, if not None, is expected to be a date or a datetime in UTC. It was previously
interpreted as localtime with the UTC offset the server started in, which was inconsistent (we are not aware of
any users of that API).

• the way to run tests on a postgresql backend has changed slightly, use cubicweb.devtools.{start,stop}pgcluster in
setUpModule and tearDownModule

• the Connection and ClientConnection objects introduced in CubicWeb 3.19 have been unified. To connect to a
repository, use:

session = repo.new_session(login, password=...)
with session.new_cnx() as cnx:

cnx.execute(...)

In tests, the ‘repo_cnx’ and ‘client_cnx’ methods of RepoAccess are now aliases to ‘cnx’.

10.115. 3.21 (10 July 2015) 355

https://forge.extranet.logilab.fr/cubicweb/cubes/timeline

Cubicweb Documentation, Release 3.38.10

10.115.5 Deprecated code drops

• the user_callback api has been removed; people should use plain ajax functions instead

• the Pyro and Zmq-pickle remote repository access methods have been entirely removed (emerging alternatives
such as rqlcontroller and cwclientlib should be used instead). Note that as a side effect, “repository-only” in-
stances (i.e. without a http component) are no longer possible. If you have any such instances, you will need to
rename the configuration file from repository.conf to all-in-one.conf and run cubicweb-ctl upgrade to update
it. Likewise, remote cubicweb-ctl shell is no longer available.

• the old (deprecated since 3.19) DBAPI api is completely removed

• cubicweb.toolsutils.config_connect() has been removed

10.116 3.20 (06/01/2015)

10.116.1 New features

• virtual relations: a new ComputedRelation class can be used in schema.py; its rule attribute is an RQL snippet
that defines the new relation.

• computed attributes: an attribute can now be defined with a formula argument (also an RQL snippet); it will be
read-only, and updated automatically.

Both of these features are described in CWEP-002, and the updated “Data model” chapter of the CubicWeb book.

• cubicweb-ctl plugins can use the cubicweb.utils.admincnx function to get a Connection object from an
instance name.

• new ‘tornado’ wsgi backend

• session cookies have the HttpOnly flag, so they’re no longer exposed to javascript

• rich text fields can be formatted as markdown

• the edit controller detects concurrent editions, and raises a ValidationError if an entity was modified between
form generation and submission

• cubicweb can use a postgresql “schema” (namespace) for its tables

• “cubicweb-ctl configure” can be used to set values of the admin user credentials in the sources configuration file

• in debug mode, setting the _cwtracehtml parameter on a request allows tracing where each bit of output is pro-
duced

10.116.2 API Changes

• ucsvreader() and ucsvreader_pb() from the dataimport module have 2 new keyword arguments
delimiter and quotechar to replace the separator and quote arguments respectively. This makes the API
match that of Python’s csv.reader(). The old arguments are still supported though deprecated.

• the migration environment’s remove_cube function is now called drop_cube.

• cubicweb.old.css is now cubicweb.css. The previous “new” cubicweb.css, along with its cubicweb.reset.css
companion, have been removed.

• the jquery-treeview plugin was updated to its latest version

356 Chapter 10. Changelog

http://hg.logilab.org/review/cwep/file/tip/CWEP-002.rst

Cubicweb Documentation, Release 3.38.10

10.116.3 Deprecated Code Drops

• most of 3.10 and 3.11 backward compat is gone; this includes:

– CtxComponent.box_action() and CtxComponent.build_link()

– cubicweb.devtools.htmlparser.XMLDemotingValidator

– various methods and properties on Entities, replaced by cw_edited and cw_attr_cache

– ‘commit_event’ method on hooks, replaced by ‘postcommit_event’

– server.hook.set_operation(), replaced by Operation.get_instance(. . .).add_data()

– View.div_id(), View.div_class() and View.create_url()

– *VComponent classes

– in forms, Field.value() and Field.help() must take the form and the field itself as arguments

– form.render() must get w as a named argument, and renderer.render() must take w as first argument

– in breadcrumbs, the optional recurs argument must be a set, not False

– cubicweb.web.views.idownloadable.{download_box,IDownloadableLineView}

– primary views no longer have render_entity_summary and summary methods

– WFHistoryVComponent’s cell_call method is replaced by render_body

– cubicweb.dataimport.ObjectStore.add(), replaced by create_entity

– ManageView.{folders,display_folders}

10.117 3.19 (28/04/2015)

10.117.1 New functionalities

• implement Cross Origin Resource Sharing (CORS) (see #2491768)

• system_source.create_eid can get a range of IDs, to reduce overhead of batch entity creation

10.117.2 Behaviour Changes

• The anonymous property of Session and Connection are now computed from the related user login. If it matches
the anonymous-user in the config the connection is anonymous. Beware that the anonymous-user config is
web specific. Therefore, no session may be anonymous in a repository only setup.

10.117.3 New Repository Access API

A new explicit Connection object replaces Session as the main repository entry point. Connection holds all the neces-
sary methods to be used server-side (execute, commit, rollback, call_service, entity_from_eid, etc. . .). One
obtains a new Connection object using session.new_cnx(). Connection objects need to have an explicit begin and
end. Use them as a context manager to never miss an end:

10.117. 3.19 (28/04/2015) 357

http://www.cubicweb.org/2491768

Cubicweb Documentation, Release 3.38.10

with session.new_cnx() as cnx:
cnx.execute('INSERT Elephant E, E name "Babar"')
cnx.commit()
cnx.execute('INSERT Elephant E, E name "Celeste"')
cnx.commit()

Once you get out of the "with" clause, the connection is closed.

Using the same Connection object in multiple threads will give you access to the same Transaction. However, Connec-
tion objects are not thread safe (hence at your own risks).

repository.internal_session is deprecated in favor of repository.internal_cnx. Note that internal con-
nections are now safe by default, i.e. the integrity hooks are enabled.

Backward compatibility is preserved on Session.

A new API has been introduced to replace the dbapi. It is called repoapi.

There are three relevant functions for now:

• repoapi.get_repository returns a Repository object either from an URI when used as repoapi.
get_repository(uri) or from a config when used as repoapi.get_repository(config=config).

• repoapi.connect(repo, login, **credentials) returns a ClientConnection associated with the user
identified by the credentials. The ClientConnection is associated with its own Session that is closed when the
ClientConnection is closed. A ClientConnection is a Connection-like object to be used client side.

• repoapi.anonymous_cnx(repo) returns a ClientConnection associated with the anonymous user if described
in the config.

On the client/web side, the Request is now using a repoapi.ClientConnection instead of a dbapi.connection.
The ClientConnection has multiple backward compatible methods to make it look like a dbapi.Cursor and dbapi.
Connection.

Session used on the Web side are now the same than the one used Server side. Some backward compatibility methods
have been installed on the server side Session to ease the transition.

The authentication stack has been altered to use the repoapi instead of the dbapi. Cubes adding new element to this
stack are likely to break.

Session data can be accessed using the cnx.data dictionary, while transaction data is available through
cnx.transaction_data. These replace the [gs]et_shared_data methods with optional txid kwarg.

All current methods and attributes used to access the repo on CubicWebTC are deprecated. You may now use a
RepoAccess object. A RepoAccess object is linked to a new Session for a specified user. It is able to create
Connection, ClientConnection and web side requests linked to this session:

access = self.new_access('babar') # create a new RepoAccess for user babar
with access.repo_cnx() as cnx:

some work with server side cnx
cnx.execute(...)
cnx.commit()
cnx.execute(...)
cnx.commit()

with access.client_cnx() as cnx:
some work with client side cnx
cnx.execute(...)
cnx.commit()

(continues on next page)

358 Chapter 10. Changelog

Cubicweb Documentation, Release 3.38.10

(continued from previous page)

with access.web_request(elephant='babar') as req:
some work with client side cnx
elephant_name = req.form['elephant']
req.execute(...)
req.cnx.commit()

By default testcase.admin_access contains a RepoAccess object for the default admin session.

10.117.4 API changes

• RepositorySessionManager.postlogin is now called with two arguments, request and session. And this
now happens before the session is linked to the request.

• SessionManager and AuthenticationManager now take a repo object at initialization time instead of a vreg.

• The async argument of _cw.call_service has been dropped. All calls are now synchronous. The zmq
notification bus looks like a good replacement for most async use cases.

• repo.stats() is now deprecated. The same information is available through a service (_cw.
call_service('repo_stats')).

• repo.gc_stats() is now deprecated. The same information is available through a service (_cw.
call_service('repo_gc_stats')).

• repo.register_user() is now deprecated. The functionality is now available through a service (_cw.
call_service('register_user')).

• request.set_session no longer takes an optional user argument.

• CubicwebTC does not have repo and cnx as class attributes anymore. They are standard instance attributes.
set_cnx and _init_repo class methods become instance methods.

• set_cnxset and free_cnxset are deprecated. cnxset are now automatically managed.

• The implementation of cascading deletion when deleting composite entities has changed. There comes a semantic
change: merely deleting a composite relation does not entail any more the deletion of the component side of the
relation.

• _cw.user_callback and _cw.user_rql_callback are deprecated. Users are encouraged to write an actual
controller (e.g. using ajaxfunc) instead of storing a closure in the session data.

• A new entity.cw_linkable_rqlmethod provides the rql to fetch all entities that are already or may be related
to the current entity using the given relation.

10.117.5 Deprecated Code Drops

• session.hijack_user mechanism has been dropped.

• EtypeRestrictionComponent has been removed, its functionality has been replaced by facets a while ago.

• the old multi-source support has been removed. Only copy-based sources remain, such as datafeed or ldapfeed.

10.117. 3.19 (28/04/2015) 359

Cubicweb Documentation, Release 3.38.10

10.118 3.18 (10/01/2014)

The migration script does not handle sqlite nor mysql instances.

10.118.1 New functionalities

• add a security debugging tool (see #2920304)

• introduce an add permission on attributes, to be interpreted at entity creation time only and allow the implemen-
tation of complex update rules that don’t block entity creation (before that the update attribute permission was
interpreted at entity creation and update time)

• the primary view display controller (uicfg) now has a set_fields_order method similar to the one available for
forms

• new method ResultSet.one(col=0) to retrive a single entity and enforce the result has only one row (see #3352314)

• new method RequestSessionBase.find to look for entities (see #3361290)

• the embedded jQuery copy has been updated to version 1.10.2, and jQuery UI to version 1.10.3.

• initial support for wsgi for the debug mode, available through the new wsgi cubicweb-ctl command, which can
use either python’s builtin wsgi server or the werkzeug module if present.

• a rql-table directive is now available in ReST fields

• cubicweb-ctl upgrade can now generate the static data resource directory directly, without a manual call to gen-
static-datadir.

10.118.2 API changes

• not really an API change, but the entity permission checks are now systematically deferred to an operation, instead
of a) trying in a hook and b) if it failed, retrying later in an operation

• The default value storage for attributes is no longer String, but Bytes. This opens the road to storing arbitrary
python objects, e.g. numpy arrays, and fixes a bug where default values whose truth value was False were not
properly migrated.

• symmetric relations are no more handled by an rql rewrite but are now handled with hooks (from the activein-
tegrity category); this may have some consequences for applications that do low-level database manipulations or
at times disable (some) hooks.

• unique together constraints (multi-columns unicity constraints) get a name attribute that maps the CubicWeb
contraint entities to corresponding backend index.

• BreadCrumbEntityVComponent’s open_breadcrumbs method now includes the first breadcrumbs separator

• entities can be compared for equality and hashed

• the on_fire_transition predicate accepts a sequence of possible transition names

• the GROUP_CONCAT rql aggregate function no longer repeats duplicate values, on the sqlite and postgresql
backends

360 Chapter 10. Changelog

http://www.cubicweb.org/2920304
https://www.cubicweb.org/ticket/3352314
https://www.cubicweb.org/ticket/3361290

Cubicweb Documentation, Release 3.38.10

10.118.3 Deprecation

• pyrorql sources have been deprecated. Multisource will be fully dropped in the next version. If you are still
using pyrorql, switch to datafeed NOW!

• the old multi-source system

• find_one_entity and find_entities in favor of find (see #3361290)

• the TmpFileViewMixin and TmpPngView classes (see #3400448)

10.118.4 Deprecated Code Drops

• ldapuser have been dropped; use ldapfeed now (see #2936496)

• action GotRhythm was removed, make sure you do not import it in your cubes (even to unregister it) (see
#3093362)

• all 3.8 backward compat is gone

• all 3.9 backward compat (including the javascript side) is gone

• the twisted (web-only) instance type has been removed

10.119 3.17 (02/05/2013)

10.119.1 New functionalities

• add a command to compare db schema and file system schema (see #464991)

• Add CubicWebRequestBase.content with the content of the HTTP request (see #2742453) (see #2742453)

• Add directive bookmark to ReST rendering (see #2545595)

• Allow user defined final type (see #124342)

10.119.2 API changes

• drop typed_eid() in favour of int() (see #2742462)

• The SIOC views and adapters have been removed from CubicWeb and moved to the sioc cube.

• The web page embedding views and adapters have been removed from CubicWeb and moved to the embed cube.

• The email sending views and controllers have been removed from CubicWeb and moved to the massmailing cube.

• RenderAndSendNotificationView is deprecated in favor of ActualNotificationOp the new operation use
the more efficient data idiom.

• Looping task can now have a interval <= 0. Negative interval disable the looping task entirely.

• We now serve html instead of xhtml. (see #2065651)

10.119. 3.17 (02/05/2013) 361

https://www.cubicweb.org/ticket/3361290
https://www.cubicweb.org/ticket/3400448
http://www.cubicweb.org/2936496
http://www.cubicweb.org/3093362
http://www.cubicweb.org/464991
http://www.cubicweb.org/2742453
http://www.cubicweb.org/ticket/2545595
https://www.logilab.org/ticket/124342
http://www.cubicweb.org/2742462
http://www.cubicweb.org/ticket/2065651

Cubicweb Documentation, Release 3.38.10

10.119.3 Deprecation

• ldapuser have been deprecated. It’ll be fully dropped in the next version. If you are still using ldapuser switch
to ldapfeed NOW!

• hijack_user have been deprecated. It will be dropped soon.

10.119.4 Deprecated Code Drops

• The progress views and adapters have been removed from CubicWeb. These classes were deprecated since 3.14.0.
They are still available in the iprogress cube.

• API deprecated since 3.7 have been dropped.

10.120 3.16 (25/01/2013)

10.120.1 New functionalities

• Add a new dataimport store (SQLGenObjectStore). This store enables a fast import of data (entity creation, link
creation) in CubicWeb, by directly flushing information in SQL. This may only be used with PostgreSQL, as it
requires the ‘COPY FROM’ command.

10.120.2 API changes

• Orm: set_attributes and set_relations are unified (and deprecated) in favor of cw_set that works in all cases.

• db-api/configuration: all the external repository connection information is now in an URL (see #2521848), al-
lowing to drop specific options of pyro nameserver host, group, etc and fix broken ZMQ source. Configuration
related changes:

– Dropped ‘pyro-ns-host’, ‘pyro-instance-id’, ‘pyro-ns-group’ from the client side configuration, in favor of
‘repository-uri’. NO MIGRATION IS DONE, supposing there is no web-only configuration in the wild.

– Stop discovering the connection method through repo_method class attribute of the configuration, varying
according to the configuration class. This is a first step on the way to a simpler configuration handling.

DB-API related changes:

– Stop indicating the connection method using ConnectionProperties.

– Drop _cnxtype attribute from Connection and cnxtype from Session. The former is replaced by a
is_repo_in_memory property and the later is totaly useless.

– Turn repo_connect into _repo_connect to mark it as a private function.

– Deprecate in_memory_cnx which becomes useless, use _repo_connect instead if necessary.

• the “tcp://” uri scheme used for ZMQ communications (in a way reminiscent of Pyro) is now named “zmqpickle-
tcp://”, so as to make room for future zmq-based lightweight communications (without python objects pickling).

• Request.base_url gets a secure=True optional parameter that yields an https url if possible, allowing hook-
generated content to send secure urls (e.g. when sending mail notifications)

• Dataimport ucsvreader gets a new boolean ignore_errors parameter.

362 Chapter 10. Changelog

http://www.cubicweb.org/2521848
http://www.zeromq.org/
tcp://
http://www.zeromq.org/

Cubicweb Documentation, Release 3.38.10

10.120.3 Unintrusive API changes

• Drop of cubicweb.web.uicfg.AutoformSectionRelationTags.bw_tag_map, deprecated since 3.6.

10.120.4 User interface changes

• The RQL search bar has now some auto-completion support. It means relation types or entity types can be
suggested while typing. It is an awesome improvement over the current behaviour !

• The action box associated with table views (from tableview.py) has been transformed into a nice-looking series
of small tabs; it means that the possible actions are immediately visible and need not be discovered by clicking
on an almost invisible icon on the upper right.

• The uicfg module has moved to web/views/ and ui configuration objects are now selectable. This will reduce the
amount of subclassing and whole methods replacement usually needed to customize the ui behaviour in many
cases.

• Remove changelog view, as neither cubicweb nor known cubes/applications were properly feeding related files.

10.120.5 Other changes

• ‘pyrorql’ sources will be automatically updated to use an URL to locate the source rather than configuration
option. ‘zmqrql’ sources were broken before this change, so no upgrade is needed. . .

• Debugging filters for Hooks and Operations have been added.

• Some cubicweb-ctl commands used to show the output of msgcat and msgfmt; they don’t anymore.

10.121 3.15 (12/04/2012)

10.121.1 New functionnalities

• Add Zmq server, based on the cutting edge ZMQ (http://www.zeromq.org/) socket library. This allows to access
distant instance, in a similar way as Pyro.

• Publish/subscribe mechanism using ZMQ for communication among cubicweb instances. The new zmq-address-
sub and zmq-address-pub configuration variables define where this communication occurs. As of this release
this mechanism is used for entity cache invalidation.

• Improved WSGI support. While there is still some caveats, most of the code which was twisted only is now
generic and allows related functionalities to work with a WSGI front-end.

• Full undo/transaction support : undo of modification has eventually been implemented, and the configuration
simplified (basically you activate it or not on an instance basis).

• Controlling HTTP status code used is not much more easier :

– WebRequest now has a status_out attribut to control the response status ;

– most web-side exceptions take an optional status argument.

10.121. 3.15 (12/04/2012) 363

http://www.zeromq.org/

Cubicweb Documentation, Release 3.38.10

10.121.2 API changes

• The base registry implementation has been moved to a new logilab.common.registry module (see #1916014).
This includes code from :

– cubicweb.vreg (the whole things that was in there)

– cw.appobject (base selectors and all).

In the process, some renaming was done:

– the top level registry is now RegistryStore (was VRegistry), but that should not impact cubicweb client
code ;

– former selectors functions are now known as “predicate”, though you still use predicates to build an ob-
ject’selector ;

– for consistency, the objectify_selector decoraror has hence be renamed to objectify_predicate ;

– on the CubicWeb side, the selectors module has been renamed to predicates.

Debugging refactoring dropped the more need for the lltrace decorator. There should be full backward compat
with proper deprecation warnings. Notice the yes predicate and objectify_predicate decorator, as well as the
traced_selection function should now be imported from the logilab.common.registry module.

• All login forms are now submitted to <app_root>/login. Redirection to requested page is now handled by the
login controller (it was previously handle by the session manager).

• Publisher.publish has been renamed to Publisher.handle_request. This method now contains generic version of
logic previously handled by Twisted. Controller.publish is not affected.

10.121.3 Unintrusive API changes

• New ‘ldapfeed’ source type, designed to replace ‘ldapuser’ source with data-feed (i.e. copy based) source ideas.

• New ‘zmqrql’ source type, similar to ‘pyrorql’ but using ømq instead of Pyro.

• A new registry called services has appeared, where you can register server-side cubicweb.server.Service child
classes. Their call method can be invoked from a web-side AppObject instance using new self._cw.call_service
method or a server-side one using self.session.call_service. This is a new way to call server-side methods, much
cleaner than monkey patching the Repository class, which becomes a deprecated way to perform similar tasks.

• a new ajax-func registry now hosts all remote functions (i.e. functions callable through the asyncRemoteExec JS
api). A convenience ajaxfunc decorator will let you expose your python function easily without all the appobject
standard boilerplate. Backward compatibility is preserved.

• the ‘json’ controller is now deprecated in favor of the ‘ajax’ one.

• WebRequest.build_url can now take a __secure__ argument. When True cubicweb try to generate an https url.

364 Chapter 10. Changelog

Cubicweb Documentation, Release 3.38.10

10.121.4 User interface changes

A new ‘undohistory’ view expose the undoable transactions and give access to undo some of them.

10.122 3.14 (09/11/2011)

First notice CW 3.14 depends on yams 0.34 (which is incompatible with prior cubicweb releases regarding instance
re-creation).

10.122.1 API changes

• Entity.fetch_rql restriction argument has been deprecated and should be replaced with a call to the new En-
tity.fetch_rqlst method, get the returned value (a rql Select node) and use the RQL syntax tree API to include the
above-mentionned restrictions.

Backward compat is kept with proper warning.

• Entity.fetch_order and Entity.fetch_unrelated_order class methods have been replaced by Entity.cw_fetch_order
and Entity.cw_fetch_unrelated_order with a different prototype:

– instead of taking (attr, var) as two string argument, they now take (select, attr, var) where select is the rql
syntax tree beinx constructed and var the variable node.

– instead of returning some string to be inserted in the ORDERBY clause, it has to modify the syntax tree

Backward compat is kept with proper warning, BESIDE cases below:

– custom order method return something else the a variable name with or without the sorting order (e.g.
cases where you sort on the value of a registered procedure as it was done in the tracker for instance). In
such case, an error is logged telling that this sorting is ignored until API upgrade.

– client code use direct access to one of those methods on an entity (no code known to do that).

• Entity._rest_attr_info class method has been renamed to Entity.cw_rest_attr_info

No backward compat yet since this is a protected method an no code is known to use it outside cubicweb itself.

• AnyEntity.linked_to has been removed as part of a refactoring of this functionality (link a entity to another one
at creation step). It was replaced by a EntityFieldsForm.linked_to property.

In the same refactoring, cubicweb.web.formfield.relvoc_linkedto, cubicweb.web.formfield.relvoc_init and cu-
bicweb.web.formfield.relvoc_unrelated were removed and replaced by RelationField methods with the same
names, that take a form as a parameter.

No backward compatibility yet. It’s still time to cry for it. Cubes known to be affected: tracker, vcsfile, vcreview.

• CWPermission entity type and its associated require_permission relation type (abstract) and require_group re-
lation definitions have been moved to a new localperms cube. With this have gone some functions from the
cubicweb.schemas package as well as some views. This makes cubicweb itself smaller while you get all the local
permissions stuff into a single, documented, place.

Backward compat is kept for existing instances, though you should have installed the localperms cubes. A
proper error should be displayed when trying to migrate to 3.14 an instance the use CWPermission without the
new cube installed. For new instances / test, you should add a dependancy on the new cube in cubes using this
feature, along with a dependancy on cubicweb >= 3.14.

• jQuery has been updated to 1.6.4 and jquery-tablesorter to 2.0.5. No backward compat issue known.

10.122. 3.14 (09/11/2011) 365

Cubicweb Documentation, Release 3.38.10

• Table views refactoring : new RsetTableView and EntityTableView, as well as rewritten an enhanced version of
PyValTableView on the same bases, with logic moved to some column renderers and a layout. Those should be
well documented and deprecates former TableView, EntityAttributesTableView and CellView, which are however
kept for backward compat, with some warnings that may not be very clear unfortunatly (you may see your own
table view subclass name here, which doesn’t make the problem that clear). Notice that _cw.view(‘table’, rset,
*kwargs) will be routed to the new RsetTableView or to the old TableView depending on given extra arguments.
See #1986413.

• display_name don’t call .lower() anymore. This may leads to changes in your user interface. Different msgid for
upper/lower cases version of entity type names, as this is the only proper way to handle this with some languages.

• IEditControlAdapter has been deprecated in favor of EditController overloading, which was made easier by
adding dedicated selectors called match_edited_type and match_form_id.

• Pre 3.6 API backward compat has been dropped, though data migration compatibility has been kept. You may
have to fix errors due to old API usage for your instance before to be able to run migration, but then you should
be able to upgrade even a pre 3.6 database.

• Deprecated cubicweb.web.views.iprogress in favor of new iprogress cube.

• Deprecated cubicweb.web.views.flot in favor of new jqplot cube.

10.122.2 Unintrusive API changes

• Refactored properties forms (eg user preferences and site wide properties) as well as pagination components to
ease overridding.

• New cubicweb.web.uihelper module with high-level helpers for uicfg.

• New anonymized_request decorator to temporary run stuff as an anonymous user, whatever the currently logged
in user.

• New ‘verbatimattr’ attribute view.

• New facet and form widget for Integer used to store binary mask.

• New js_href function to generated proper javascript href.

• match_kwargs and match_form_params selectors both accept a new once_is_enough argument.

• printable_value is now a method of request, and may be given dict of formatters to use.

• [Rset]TableView allows to set None in ‘headers’, meaning the label should be fetched from the result set as done
by default.

• Field vocabulary computation on entity creation now takes __linkto information into accounet.

• Started a cubicweb.pylintext pylint plugin to help pylint analyzing cubes.

10.122.3 RQL

• Support for HAVING in ‘SET’ and ‘DELETE’ queries.

• new AT_TZ function to get back a timestamp at a given time-zone.

• new WEEKDAY date extraction function

366 Chapter 10. Changelog

Cubicweb Documentation, Release 3.38.10

10.122.4 User interface changes

• Datafeed source now present an history of the latest import’s log, including global status and de-
bug/info/warning/error messages issued during imports. Import logs older than a configurable amount of time
are automatically deleted.

• Breadcrumbs component is properly kept when creating an entity with ‘__linkto’.

• users and groups management now really lead to that (i.e. includes groups management).

• New ‘jsonp’ controller with ‘jsonexport’ and ‘ejsonexport’ views.

10.122.5 Configuration

• Added option ‘resources-concat’ to make javascript/css files concatenation optional.

10.122. 3.14 (09/11/2011) 367

Cubicweb Documentation, Release 3.38.10

368 Chapter 10. Changelog

CHAPTER

ELEVEN

API

11.1 cubicweb

CubicWeb is a generic framework to quickly build applications which describes relations between entitites.

11.1.1 Exceptions

Base exceptions

exception cubicweb.ProgrammingError

Bases: Exception

Exception raised for errors that are related to the database’s operation and not necessarily under the control of
the programmer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction could
not be processed, a memory allocation error occurred during processing, etc.

exception cubicweb.CubicWebException

Bases: Exception

base class for cubicweb server exception

exception cubicweb.InternalError

Bases: cubicweb._exceptions.CubicWebException

base class for exceptions which should not occur

exception cubicweb.SecurityError

Bases: cubicweb._exceptions.CubicWebException

base class for cubicweb server security exceptions

exception cubicweb.RepositoryError

Bases: cubicweb._exceptions.CubicWebException

base class for repository exceptions

exception cubicweb.SourceException

Bases: cubicweb._exceptions.CubicWebException

base class for source exceptions

exception cubicweb.CubicWebRuntimeError

Bases: cubicweb._exceptions.CubicWebException

base class for runtime exceptions

369

Cubicweb Documentation, Release 3.38.10

Repository exceptions

exception cubicweb.ConnectionError

Bases: cubicweb._exceptions.RepositoryError

raised when a bad connection id is given or when an attempt to establish a connection failed

exception cubicweb.AuthenticationError

Bases: cubicweb._exceptions.ConnectionError

raised when an attempt to establish a connection failed due to wrong connection information (login / password
or other authentication token)

exception cubicweb.BadConnectionId

Bases: cubicweb._exceptions.ConnectionError

raised when a bad connection id is given

exception cubicweb.UnknownEid

Bases: cubicweb._exceptions.RepositoryError

the eid is not defined in the system tables

exception cubicweb.UniqueTogetherError(session, **kwargs)
Bases: cubicweb._exceptions.RepositoryError

raised when a unique_together constraint caused an IntegrityError

Security Exceptions

exception cubicweb.Unauthorized

Bases: cubicweb._exceptions.SecurityError

raised when a user tries to perform an action without sufficient credentials

exception cubicweb.Forbidden

Bases: cubicweb._exceptions.SecurityError

raised when a user tries to perform a forbidden action

Source exceptions

exception cubicweb.EidNotInSource

Bases: cubicweb._exceptions.SourceException

trying to access an object with a particular eid from a particular source has failed

Registry exceptions

exception cubicweb.UnknownProperty

Bases: logilab.common.registry.RegistryException

property found in database but unknown in registry

370 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

Query exceptions

exception cubicweb.QueryError

Bases: cubicweb._exceptions.CubicWebRuntimeError

a query try to do something it shouldn’t

exception cubicweb.NotAnEntity

Bases: cubicweb._exceptions.CubicWebRuntimeError

raised when get_entity is called for a column which doesn’t contain a non final entity

exception cubicweb.MultipleResultsError

Bases: cubicweb._exceptions.CubicWebRuntimeError

raised when ResultSet.one() is called on a resultset with multiple rows of multiple columns.

exception cubicweb.NoResultError

Bases: cubicweb._exceptions.CubicWebRuntimeError

raised when no result is found but at least one is expected.

exception cubicweb.UndoTransactionException(txuuid, errors)
Bases: cubicweb._exceptions.QueryError

Raised when undoing a transaction could not be performed completely.

Note that :
1) the partial undo operation might be acceptable depending upon the final application

2) the undo operation can also fail with a ValidationError in cases where the undoing breaks integrity
constraints checked immediately.

3) It might be that neither of those exception is raised but a subsequent commit might raise a Valida-
tionError in cases where the undoing breaks integrity constraints checked at commit time.

Parameters
• txuuid – Unique identifier of the partially undone transaction

• errors (list) – List of errors occurred during undoing

Misc

exception cubicweb.ConfigurationError

Bases: cubicweb._exceptions.CubicWebException

a misconfiguration error

exception cubicweb.ExecutionError

Bases: Exception

server execution control error (already started, not running. . .)

exception cubicweb.BadCommandUsage

Bases: Exception

Raised when an unknown command is used or when a command is not correctly used (bad options, too much /
missing arguments. . .).

Trigger display of command usage.

11.1. cubicweb 371

Cubicweb Documentation, Release 3.38.10

exception cubicweb.ValidationError(entity, errors: Dict, msgargs: Optional[Dict] = None, i18nvalues:
Optional[List] = None)

Bases: yams._exceptions.SchemaError

Validation error details the reason(s) why the validation failed.

Arguments are:

• entity: the entity that could not be validated; actual type depends on the client library

• errors: errors dictionary, None key used for global error, other keys should be attribute/relation of the
entity, qualified as subject/object using yams.role_name(). Values are the message associated to the
keys, and may include interpolation string starting with ‘%(KEY-’ where ‘KEY’ will be replaced by the
associated key once the message has been translated. This allows predictable/translatable message and
avoid args conflict if used for several keys.

• msgargs: dictionary of substitutions to be inserted in error messages once translated (only if msgargs is
given)

• i18nvalues: list of keys in msgargs whose value should be translated

Translation will be done in-place by calling translate().

11.1.2 Utilities

class cubicweb.Binary(buf=b'')
class to hold binary data. Use BytesIO to prevent use of unicode data

class cubicweb.CubicWebEventManager

simple event / callback manager.

Typical usage to register a callback:

>>> from cubicweb import CW_EVENT_MANAGER
>>> CW_EVENT_MANAGER.bind('after-registry-reload', mycallback)

Typical usage to emit an event:

>>> from cubicweb import CW_EVENT_MANAGER
>>> CW_EVENT_MANAGER.emit('after-registry-reload')

emit() accepts an additional context parameter that will be passed to the callback if specified (and only in that
case)

cubicweb.onevent(event, *args, **kwargs)
decorator to ease event / callback binding

>>> from cubicweb import onevent
>>> @onevent('before-registry-reload')
... def mycallback():
... print 'hello'
...
>>>

cubicweb.validation_error(entity, errors, substitutions=None, i18nvalues=None)
easy way to retrieve a cubicweb.ValidationError for an entity or eid.

You may also have 2-tuple as error keys, yams.role_name() will be called automatically for them.

372 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

Messages in errors should not be translated yet, though marked for internationalization. You may give an
additional substition dictionary that will be used for interpolation after the translation.

11.2 cubicweb.appobject

11.2.1 The AppObject class

The AppObject class is the base class for all dynamically loaded objects (application objects) accessible through the
vregistry.

We can find a certain number of attributes and methods defined in this class and common to all the application objects.

class cubicweb.appobject.AppObject(req, **extra)
Bases: logilab.common.registry.RegistrableObject

This is the base class for CubicWeb application objects which are selected in a request context.

The following attributes should be set on concrete appobject classes:

At selection time, the following attributes are set on the instance:

_cw current request

cw_extra_kwargs other received arguments

And also the following, only if rset is found in arguments (in which case rset/row/col will be removed from
cwextra_kwargs):

cw_rset context result set or None

cw_row if a result set is set and the context is about a particular cell in the result set, and not the result set as a
whole, specify the row number we are interested in, else None

cw_col if a result set is set and the context is about a particular cell in the result set, and not the result set as a
whole, specify the col number we are interested in, else None

Note:
• do not inherit directly from this class but from a more specific class such as AnyEntity, EntityView,

AnyRsetView, Action. . .

critical(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘CRITICAL’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.critical(“Houston, we have a %s”, “major disaster”, exc_info=1)

cw_propval(propid)
return cw property value associated to key

<cls.__registry__>.<cls.id>.<propid>

debug(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘DEBUG’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.debug(“Houston, we have a %s”, “thorny problem”, exc_info=1)

11.2. cubicweb.appobject 373

Cubicweb Documentation, Release 3.38.10

error(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘ERROR’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.error(“Houston, we have a %s”, “major problem”, exc_info=1)

exception(msg, *args, exc_info=True, **kwargs)
Convenience method for logging an ERROR with exception information.

info(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘INFO’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.info(“Houston, we have a %s”, “interesting problem”, exc_info=1)

warning(msg, *args, **kwargs)
Log ‘msg % args’ with severity ‘WARNING’.

To pass exception information, use the keyword argument exc_info with a true value, e.g.

logger.warning(“Houston, we have a %s”, “bit of a problem”, exc_info=1)

11.3 cubicweb.cwvreg

Cubicweb registries

class cubicweb.cwvreg.CWRegistryStore(config, initlog=True)
Bases: logilab.common.registry.RegistryStore

Central registry for the cubicweb instance, extending the generic RegistryStore with some cubicweb specific
stuff.

This is one of the central object in cubicweb instance, coupling dynamically loaded objects with the schema and
the configuration objects.

It specializes the RegistryStore by adding some convenience methods to access to stored objects. Currently
we have the following registries of objects known by the web instance (library may use some others additional
registries):

• ‘etypes’, entity type classes

• ‘views’, views and templates (e.g. layout views)

• ‘components’, non contextual components, like magic search, url evaluators

• ‘ctxcomponents’, contextual components like boxes and dynamic section

• ‘actions’, contextual actions, eg links to display in predefined places in the ui

• ‘forms’, describing logic of HTML form

• ‘formrenderers’, rendering forms to html

• ‘controllers’, primary objects to handle request publishing, directly plugged into the application

REGISTRY_FACTORY: Dict[Union[None, str], type] = {None: <class
'cubicweb.cwvreg.CWRegistry'>, 'etypes': <class 'cubicweb.cwvreg.ETypeRegistry'>,
'views': <class 'cubicweb.cwvreg.ViewsRegistry'>, 'actions': <class
'cubicweb.cwvreg.ActionsRegistry'>, 'ctxcomponents': <class
'cubicweb.cwvreg.CtxComponentsRegistry'>, 'uicfg': <class
'cubicweb.cwvreg.InstancesRegistry'>}

374 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

compute_var_types(req, rqlst, args)

init_properties(propvalues)
init the property values registry using the given set of couple (key, value)

initialization_completed()

cw specific code once vreg initialization is completed:

• remove objects requiring a missing appobject, unless config.cleanup_unused_appobjects is false

• init rtags

is_reload_needed(modnames)
overriden to handle modules names instead of directories

items()→ a set-like object providing a view on D's items

iteritems()

itervalues()

load_file(filepath, modname)
load registrable objects (if any) from a python file

parse(req, rql, args=None)

property_info(key)
return dictionary containing description associated to the given property key (including type, defaut value,
help and a site wide boolean)

property_value(key)

register(obj, *args, **kwargs)
register obj application object into registryname or obj.__registry__ if not specified, with identifier oid or
obj.__regid__ if not specified.

If clear is true, all objects with the same identifier will be previously unregistered.

register_all(objects, modname, butclasses=())
register registrable objects into objects.

Registrable objects are properly configured subclasses of RegistrableObject. Objects which are not
defined in the module modname or which are in butclasses won’t be registered.

Typical usage is:

store.register_all(globals().values(), __name__,␣
→˓(ClassIWantToRegisterExplicitly,))

So you get partially automatic registration, keeping manual registration for some object (to use
register_and_replace() for instance).

register_and_replace(obj, replaced)
register obj object into registryname or obj.__registries__ if not specified. If found, the replaced object
will be unregistered first (else a warning will be issued as it is generally unexpected).

register_property(key, type, help, default=None, vocabulary=None, sitewide=False)
register a given property

11.3. cubicweb.cwvreg 375

Cubicweb Documentation, Release 3.38.10

reload(modnames, force_reload=True)
modification detected, reset and reload the vreg

reload_if_needed()

reset()

clear all registries managed by this store

property rqlhelper

set_schema(schema)
set instance’schema and load application objects

setdefault(regid)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

typed_value(key, value)
value is a unicode string, return it correctly typed. Let potential type error propagates.

update_schema(schema)
update .schema attribute on registered objects, necessary for some tests

user_property_keys(withsitewide=False)

values()→ an object providing a view on D's values

class cubicweb.cwvreg.CWRegistry(vreg)
Bases: logilab.common.registry.Registry

Parameters vreg – the CWRegistryStore managing this registry.

poss_visible_objects(*args, **kwargs)
return an ordered list of possible app objects in a given registry, supposing they support the ‘visible’ and
‘order’ properties (as most visualizable objects)

property schema

The cubicweb.schema.CubicWebSchema

select(_Registry__oid, *args, **kwargs)
return the most specific object among those with the given oid according to the given context.

raise ObjectNotFound if there are no object with id oid in this registry

raise NoSelectableObject if no object can be selected

class cubicweb.cwvreg.InstancesRegistry(vreg)
Bases: cubicweb.cwvreg.CWRegistry

Parameters vreg – the CWRegistryStore managing this registry.

selected(winner, args, kwargs)
overriden to avoid the default ‘instanciation’ behaviour, ie winner(*args, **kwargs)

class cubicweb.cwvreg.ETypeRegistry(vreg)
Bases: cubicweb.cwvreg.CWRegistry

Parameters vreg – the CWRegistryStore managing this registry.

376 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

etype_class(**kwargs)
return an entity class for the given entity type.

Try to find out a specific class for this kind of entity or default to a dump of the nearest parent class (in
yams inheritance) registered.

Fall back to ‘Any’ if not yams parent class found.

fetch_attrs(targettypes)
return intersection of fetch_attrs of each entity type in targettypes

initialization_completed()

on registration completed, clear etype_class internal cache

register(obj, **kwargs)
base method to add an object in the registry

class cubicweb.cwvreg.ViewsRegistry(vreg)
Bases: cubicweb.cwvreg.CWRegistry

Parameters vreg – the CWRegistryStore managing this registry.

main_template(req, oid='main-template', rset=None, **kwargs)
display query by calling the given template (default to main), and returning the output as a string instead
of requiring the [w]rite method as argument

possible_views(req, rset=None, **kwargs)
return an iterator on possible views for this result set

views returned are classes, not instances

class cubicweb.cwvreg.ActionsRegistry(vreg)
Bases: cubicweb.cwvreg.CWRegistry

Parameters vreg – the CWRegistryStore managing this registry.

poss_visible_objects(*args, **kwargs)
return an ordered list of possible actions

class cubicweb.cwvreg.CtxComponentsRegistry(vreg)
Bases: cubicweb.cwvreg.CWRegistry

Parameters vreg – the CWRegistryStore managing this registry.

poss_visible_objects(*args, **kwargs)
return an ordered list of possible components

11.4 logilab.common.registry

This module provides bases for predicates dispatching (the pattern in use here is similar to what’s refered as multi-
dispatch or predicate-dispatch in the literature, though a bit different since the idea is to select across different imple-
mentation ‘e.g. classes), not to dispatch a message to a function or method. It contains the following classes:

• RegistryStore, the top level object which loads implementation objects and stores them into registries. You’ll
usually use it to access registries and their contained objects;

• Registry, the base class which contains objects semantically grouped (for instance, sharing a same API, hence
the ‘implementation’ name). You’ll use it to select the proper implementation according to a context. Notice you
may use registries on their own without using the store.

11.4. logilab.common.registry 377

Cubicweb Documentation, Release 3.38.10

Note: implementation objects are usually designed to be accessed through the registry and not by direct instantiation,
besides to use it as base classe.

The selection procedure is delegated to a selector, which is responsible for scoring the object according to some context.
At the end of the selection, if an implementation has been found, an instance of this class is returned. A selector is built
from one or more predicates combined together using AND, OR, NOT operators (actually &, | and ~). You’ll thus find
some base classes to build predicates:

• Predicate, the abstract base predicate class

• AndPredicate, OrPredicate, NotPredicate, which you shouldn’t have to use directly. You’ll use &, | and
‘~’ operators between predicates directly

• objectify_predicate()

You’ll eventually find one concrete predicate: yes

class logilab.common.registry.RegistryStore(debugmode: bool = False)
This class is responsible for loading objects and storing them in their registry which is created on the fly as
needed.

It handles dynamic registration of objects and provides a convenient api to access them. To be recognized as an
object that should be stored into one of the store’s registry (Registry), an object must provide the following
attributes, used control how they interact with the registry:

__registries__ list of registry names (string like ‘views’, ‘templates’. . .) into which the object should be
registered

__regid__ object identifier in the registry (string like ‘main’, ‘primary’, ‘folder_box’)

__select__ the object predicate selectors

Moreover, the __abstract__ attribute may be set to True to indicate that an object is abstract and should not be
registered (such inherited attributes not considered).

Note: When using the store to load objects dynamically, you always have to use super() to get the methods and
attributes of the superclasses, and not use the class identifier. If not, you’ll get into trouble at reload time.

For example, instead of writing:

class Thing(Parent):
__regid__ = 'athing'
__select__ = yes()

def f(self, arg1):
Parent.f(self, arg1)

You must write:

class Thing(Parent):
__regid__ = 'athing'
__select__ = yes()

def f(self, arg1):
super(Thing, self).f(arg1)

378 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

Dynamic loading is triggered by calling the register_modnames() method, given a list of modules names to
inspect.

register_modnames(modnames: List[str])→ None
register all objects found in <modnames>

For each module, by default, all compatible objects are registered automatically. However if some objects come
as replacement of other objects, or have to be included only if some condition is met, you’ll have to define a
registration_callback(vreg) function in the module and explicitly register all objects in this module, using the
api defined below.

register_all(objects: Iterable, modname: str, butclasses: Sequence = ())→ None
register registrable objects into objects.

Registrable objects are properly configured subclasses of RegistrableObject. Objects which are not
defined in the module modname or which are in butclasses won’t be registered.

Typical usage is:

store.register_all(globals().values(), __name__,␣
→˓(ClassIWantToRegisterExplicitly,))

So you get partially automatic registration, keeping manual registration for some object (to use
register_and_replace() for instance).

register_and_replace(obj, replaced, registryname=None)
register obj object into registryname or obj.__registries__ if not specified. If found, the replaced object
will be unregistered first (else a warning will be issued as it is generally unexpected).

register(obj: Any, registryname: Optional[Any] = None, oid: Optional[Any] = None, clear: bool = False)
→ None

register obj implementation into registryname or obj.__registries__ if not specified, with identifier oid or
obj.__regid__ if not specified.

If clear is true, all objects with the same identifier will be previously unregistered.

unregister(obj, registryname=None)
unregister obj object from the registry registryname or obj.__registries__ if not specified.

Note: Once the function registration_callback(vreg) is implemented in a module, all the objects from this
module have to be explicitly registered as it disables the automatic object registration.

Examples:

def registration_callback(store):
register everything in the module except BabarClass
store.register_all(globals().values(), __name__, (BabarClass,))

conditionally register BabarClass
if 'babar_relation' in store.schema:

store.register(BabarClass)

In this example, we register all application object classes defined in the module except BabarClass. This class
is then registered only if the ‘babar_relation’ relation type is defined in the instance schema.

11.4. logilab.common.registry 379

Cubicweb Documentation, Release 3.38.10

def registration_callback(store):
store.register(Elephant)
replace Babar by Celeste
store.register_and_replace(Celeste, Babar)

In this example, we explicitly register classes one by one:

• the Elephant class

• the Celeste to replace Babar

If at some point we register a new appobject class in this module, it won’t be registered at all without modification
to the registration_callback implementation. The first example will register it though, thanks to the call to the
register_all method.

The REGISTRY_FACTORY class dictionary allows to specify which class should be instantiated for a given
registry name. The class associated to None key will be the class used when there is no specific class for a name.

class logilab.common.registry.Registry(debugmode: bool)
The registry store a set of implementations associated to identifier:

• to each identifier are associated a list of implementations

• to select an implementation of a given identifier, you should use one of the select() or
select_or_none() method

• to select a list of implementations for a context, you should use the possible_objects() method

• dictionary like access to an identifier will return the bare list of implementations for this identifier.

To be usable in a registry, the only requirement is to have a __select__ attribute.

At the end of the registration process, the __registered__() method is called on each registered object which
have them, given the registry in which it’s registered as argument.

Registration methods:

register(obj: Any, oid: Optional[Any] = None, clear: bool = False)→ None
base method to add an object in the registry

unregister(obj)
remove object <obj> from this registry

Selection methods:

select(_Registry__oid, *args, **kwargs)
return the most specific object among those with the given oid according to the given context.

raise ObjectNotFound if there are no object with id oid in this registry

raise NoSelectableObject if no object can be selected

select_or_none(_Registry__oid, *args, **kwargs)
return the most specific object among those with the given oid according to the given context, or None if
no object applies.

possible_objects(*args, **kwargs)
return an iterator on possible objects in this registry for the given context

380 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

object_by_id(oid, *args, **kwargs)
return object with the oid identifier. Only one object is expected to be found.

raise ObjectNotFound if there are no object with id oid in this registry

raise AssertionError if there is more than one object there

11.4.1 Predicates

class logilab.common.registry.Predicate

base class for selector classes providing implementation for operators &, | and ~

This class is only here to give access to binary operators, the selector logic itself should be implemented in the
__call__() method. Notice it should usually accept any arbitrary arguments (the context), though that may
vary depending on your usage of the registry.

a selector is called to help choosing the correct object for a particular context by returning a score (int) telling
how well the implementation given as first argument fit to the given context.

0 score means that the class doesn’t apply.

logilab.common.registry.objectify_predicate(selector_func: Callable)→ Any
Most of the time, a simple score function is enough to build a selector. The objectify_predicate() decorator
turn it into a proper selector class:

@objectify_predicate
def one(cls, req, rset=None, **kwargs):

return 1

class MyView(View):
__select__ = View.__select__ & one()

class logilab.common.registry.yes(score: float = 0.5)
Return the score given as parameter, with a default score of 0.5 so any other selector take precedence.

Usually used for objects which can be selected whatever the context, or also sometimes to add arbitrary points
to a score.

Take care, yes(0) could be named ‘no’. . .

class logilab.common.registry.AndPredicate(*selectors: Any)
and-chained selectors

class logilab.common.registry.OrPredicate(*selectors: Any)
or-chained selectors

class logilab.common.registry.NotPredicate(selector)
negation selector

11.4. logilab.common.registry 381

Cubicweb Documentation, Release 3.38.10

11.4.2 Debugging

class logilab.common.registry.traced_selection(traced='all')
Typical usage is :

>>> from logilab.common.registry import traced_selection
>>> with traced_selection():
... # some code in which you want to debug selectors
... # for all objects

This will yield lines like this in the logs:

selector one_line_rset returned 0 for <class 'elephant.Babar'>

You can also give to traced_selection the identifiers of objects on which you want to debug selection (‘oid1’
and ‘oid2’ in the example above).

>>> with traced_selection(('regid1', 'regid2')):
... # some code in which you want to debug selectors
... # for objects with __regid__ 'regid1' and 'regid2'

A potentially useful point to set up such a tracing function is the logilab.common.registry.Registry.select method
body.

11.4.3 Exceptions

class logilab.common.registry.RegistryException

Base class for registry exception.

class logilab.common.registry.RegistryNotFound

Raised when an unknown registry is requested.

This is usually a programming/typo error.

class logilab.common.registry.ObjectNotFound

Raised when an unregistered object is requested.

This may be a programming/typo or a misconfiguration error.

class logilab.common.registry.NoSelectableObject(args, kwargs, objects)
Raised when no object is selectable for a given context.

11.5 cubicweb.dataimport

Package containing various utilities to import data into cubicweb.

382 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

11.5.1 Utilities

cubicweb.dataimport.count_lines(*args, **kwargs)

cubicweb.dataimport.ucsvreader_pb(*args, **kwargs)

cubicweb.dataimport.ucsvreader(*args, **kwargs)

cubicweb.dataimport.callfunc_every(func, number, iterable)
yield items of iterable one by one and call function func every number iterations. Always call function func at
the end.

11.5.2 Object Stores

cubicweb.dataimport.RQLObjectStore

alias of logilab.common.deprecation.callable_moved.<locals>.callnew

cubicweb.dataimport.NoHookRQLObjectStore

alias of logilab.common.deprecation.callable_moved.<locals>.callnew

11.6 cubicweb.predicates

Predicate classes

class cubicweb.appobject.yes(score: float = 0.5)
Return the score given as parameter, with a default score of 0.5 so any other selector take precedence.

Usually used for objects which can be selected whatever the context, or also sometimes to add arbitrary points
to a score.

Take care, yes(0) could be named ‘no’. . .

class cubicweb.predicates.match_kwargs(*expected, **kwargs)
Return non-zero score if parameter names specified as initializer arguments are specified in the input context.

Return a score corresponding to the number of expected parameters.

When multiple parameters are expected, all of them should be found in the input context unless mode keyword
argument is given to ‘any’, in which case a single matching parameter is enough.

class cubicweb.predicates.appobject_selectable(registry, *regids)
Return 1 if another appobject is selectable using the same input context.

Initializer arguments:

• registry, a registry name

• regids, object identifiers in this registry, one of them should be selectable.

class cubicweb.predicates.adaptable(*regids)
Return 1 if another appobject is selectable using the same input context.

Initializer arguments:

• regids, adapter identifiers (e.g. interface names) to which the context (usually entities) should be adaptable.
One of them should be selectable when multiple identifiers are given.

11.6. cubicweb.predicates 383

Cubicweb Documentation, Release 3.38.10

class cubicweb.predicates.configuration_values(key, values)
Return 1 if the instance has an option set to a given value(s) in its configuration file.

class cubicweb.predicates.none_rset

Return 1 if the result set is None (eg usually not specified).

class cubicweb.predicates.any_rset

Return 1 for any result set, whatever the number of rows in it, even 0.

class cubicweb.predicates.nonempty_rset

Return 1 for result set containing one ore more rows.

class cubicweb.predicates.empty_rset

Return 1 for result set which doesn’t contain any row.

class cubicweb.predicates.one_line_rset

Return 1 if the result set is of size 1, or greater but a specific row in the result set is specified (‘row’ argument).

class cubicweb.predicates.multi_lines_rset(expected=None, operator=<built-in function eq>)
Return 1 if the operator expression matches between num elements in the result set and the expected value if
defined.

By default, multi_lines_rset(expected) matches equality expression: nb row(s) in result set equals to ex-
pected value

But, you can perform richer comparisons by overriding default operator: multi_lines_rset(expected, oper-
ator.gt)

If expected is None, return 1 if the result set contains at least two rows. If rset is None, return 0.

class cubicweb.predicates.multi_columns_rset(expected=None, operator=<built-in function eq>)
If nb is specified, return 1 if the result set has exactly nb column per row. Else (nb is None), return 1 if the result
set contains at least two columns per row. Return 0 for empty result set.

class cubicweb.predicates.paginated_rset(nbpages=1)
Return 1 or more for result set with more rows than one or more page size. You can specify expected number of
pages to the initializer (default to one), and you’ll get that number of pages as score if the result set is big enough.

Page size is searched in (respecting order): * a page_size argument * a page_size form parameters * the
navigation.page-size property (see Configuring persistent properties)

class cubicweb.predicates.sorted_rset

Return 1 for sorted result set (e.g. from an RQL query containing an ORDERBY clause), with exception that it
will return 0 if the rset is ‘ORDERBY FTIRANK(VAR)’ (eg sorted by rank value of the has_text index).

class cubicweb.predicates.one_etype_rset

Return 1 if the result set contains entities which are all of the same type in the column specified by the col
argument of the input context, or in column 0.

class cubicweb.predicates.multi_etypes_rset(expected=None, operator=<built-in function eq>)
If nb is specified, return 1 if the result set contains nb different types of entities in the column specified by the
col argument of the input context, or in column 0. If nb is None, return 1 if the result set contains at least two
different types of entities.

class cubicweb.predicates.non_final_entity(accept_none=True, mode='all')
Return 1 for entity of a non final entity type(s). Remember, “final” entity types are String, Int, etc. . . This is
equivalent to is_instance(‘Any’) but more optimized.

See EClassPredicate documentation for entity class lookup / score rules according to the input context.

384 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

class cubicweb.predicates.is_instance(*expected_etypes, **kwargs)
Return non-zero score for entity that is an instance of the one of given type(s). If multiple arguments are given,
matching one of them is enough.

Entity types should be given as string, the corresponding class will be fetched from the registry at selection time.

See EClassPredicate documentation for entity class lookup / score rules according to the input context.

Note: the score will reflect class proximity so the most specific object will be selected.

class cubicweb.predicates.score_entity(scorefunc, mode='all')
Return score according to an arbitrary function given as argument which will be called with input content entity
as argument.

This is a very useful predicate that will usually interest you since it allows a lot of things without having to write
a specific predicate.

The function can return arbitrary value which will be casted to an integer value at the end.

See EntityPredicate documentation for entity lookup / score rules according to the input context.

class cubicweb.predicates.rql_condition(expression, mode='all', user_condition=False)
Return non-zero score if arbitrary rql specified in expression initializer argument return some results for entity
found in the input context. Returned score is the number of items returned by the rql condition.

expression is expected to be a string containing an rql expression, which must use ‘X’ variable to represent the
context entity and may use ‘U’ to represent the request’s user.

Warning: If simply testing value of some attribute/relation of context entity (X), you should rather use the
score_entity predicate which will benefit from the ORM’s request entities cache.

See EntityPredicate documentation for entity lookup / score rules according to the input context.

class cubicweb.predicates.relation_possible(rtype, role='subject', target_etype=None, action='read',
strict=False, **kwargs)

Return 1 for entity that supports the relation, provided that the request’s user may do some action on it (see
below).

The relation is specified by the following initializer arguments:

• rtype, the name of the relation

• role, the role of the entity in the relation, either ‘subject’ or ‘object’, default to ‘subject’

• target_etype, optional name of an entity type that should be supported at the other end of the relation

• action, a relation schema action (e.g. one of ‘read’, ‘add’, ‘delete’, default to ‘read’) which must be granted
to the user, else a 0 score will be returned. Give None if you don’t want any permission checking.

• strict, boolean (default to False) telling what to do when the user has not globally the permission for the
action (eg the action is not granted to one of the user’s groups)

– when strict is False, if there are some local role defined for this action (e.g. using rql expressions),
then the permission will be considered as granted

– when strict is True, then the permission will be actually checked for each entity

11.6. cubicweb.predicates 385

Cubicweb Documentation, Release 3.38.10

Setting strict to True impacts performance for large result set since you’ll then get the EntityPredicate be-
haviour while otherwise you get the EClassPredicate’s one. See those classes documentation for entity lookup
/ score rules according to the input context.

class cubicweb.predicates.partial_relation_possible(action='read', **kwargs)
Same as :class:~`cubicweb.predicates.relation_possible`, but will look for attributes of the selected class to get
information which is otherwise expected by the initializer, except for action and strict which are kept as initializer
arguments.

This is useful to predefine predicate of an abstract class designed to be customized.

class cubicweb.predicates.has_related_entities(rtype, role='subject', target_etype=None, **kwargs)
Return 1 if entity support the specified relation and has some linked entities by this relation , optionally filtered
according to the specified target type.

The relation is specified by the following initializer arguments:

• rtype, the name of the relation

• role, the role of the entity in the relation, either ‘subject’ or ‘object’, default to ‘subject’.

• target_etype, optional name of an entity type that should be found at the other end of the relation

See EntityPredicate documentation for entity lookup / score rules according to the input context.

class cubicweb.predicates.partial_has_related_entities(**kwargs)
Same as :class:~`cubicweb.predicates.has_related_entities`, but will look for attributes of the selected class to
get information which is otherwise expected by the initializer.

This is useful to predefine predicate of an abstract class designed to be customized.

class cubicweb.predicates.has_permission(action)
Return non-zero score if request’s user has the permission to do the requested action on the entity. action is an
entity schema action (eg one of ‘read’, ‘add’, ‘delete’, ‘update’).

Here are entity lookup / scoring rules:

• if entity is specified, check permission is granted for this entity

• elif row is specified, check permission is granted for the entity found in the specified cell

• else check permission is granted for each entity found in the column specified specified by the col argument
or in column 0

class cubicweb.predicates.has_add_permission(etype=None, **kwargs)
Return 1 if request’s user has the add permission on entity type specified in the etype initializer argument, or
according to entity found in the input content if not specified.

It also check that then entity type is not a strict subobject (e.g. may only be used as a composed of another entity).

See EClassPredicate documentation for entity class lookup / score rules according to the input context when
etype is not specified.

class cubicweb.predicates.has_mimetype(mimetype, mode='all')
Return 1 if the entity adapt to IDownloadable and has the given MIME type.

You can give ‘image/’ to match any image for instance, or ‘image/png’ to match only PNG images.

class cubicweb.predicates.is_in_state(*expected)
Return 1 if entity is in one of the states given as argument list

You should use this instead of your own score_entity predicate to avoid some gotchas:

• possible views gives a fake entity with no state

386 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

• you must use the latest tr info thru the workflow adapter for repository side checking of the current state

In debug mode, this predicate can raise ValueError for unknown states names (only checked on entities without
a custom workflow)

Return type int

cubicweb.predicates.on_fire_transition(etype, tr_names)
Return 1 when entity of the type etype is going through transition of a name included in tr_names.

You should use this predicate on ‘after_add_entity’ hook, since it’s actually looking for addition of TrInfo entities.
Hence in the hook, self.entity will reference the matching TrInfo entity, allowing to get all the transition details
(including the entity to which is applied the transition but also its original state, transition, destination state,
user. . .).

See cubicweb.entities.wfobjs.TrInfo for more information.

class cubicweb.predicates.match_user_groups(*expected, **kwargs)
Return a non-zero score if request’s user is in at least one of the groups given as initializer argument. Returned
score is the number of groups in which the user is.

If the special ‘owners’ group is given and rset is specified in the input context:

• if row is specified check the entity at the given row/col (default to 0) is owned by the user

• else check all entities in col (default to 0) are owned by the user

class cubicweb.predicates.no_cnx

Return 1 if the web session has no connection set. This occurs when anonymous access is not allowed and user
isn’t authenticated.

class cubicweb.predicates.anonymous_user

Return 1 if the user is not authenticated (i.e. is the anonymous user).

class cubicweb.predicates.authenticated_user

Return 1 if the user is authenticated (i.e. not the anonymous user).

class cubicweb.predicates.match_form_params(*expected, **kwargs)
Return non-zero score if parameter names specified as initializer arguments are specified in request’s form pa-
rameters.

Return a score corresponding to the number of expected parameters.

When multiple parameters are expected, all of them should be found in the input context unless mode keyword
argument is given to ‘any’, in which case a single matching parameter is enough.

override default __init__ to allow either named or positional parameters.

class cubicweb.predicates.match_search_state(*expected, **kwargs)
Return 1 if the current request search state is in one of the expected states given to the initializer.

Known search states are either ‘normal’ or ‘linksearch’ (eg searching for an object to create a relation with
another).

This predicate is usually used by action that want to appears or not according to the ui search state.

class cubicweb.predicates.match_context_prop

Return 1 if:

• no context is specified in input context (take care to confusion, here context refers to a string given as an
argument to the input context. . .)

• specified context is matching the context property value for the appobject using this predicate

11.6. cubicweb.predicates 387

Cubicweb Documentation, Release 3.38.10

• the appobject’s context property value is None

This predicate is usually used by contextual components that want to appears in a configurable place.

class cubicweb.predicates.match_context(*expected, **kwargs)

class cubicweb.predicates.match_view(*expected, **kwargs)
Return 1 if a view is specified an as its registry id is in one of the expected view id given to the initializer.

class cubicweb.predicates.primary_view

Return 1 if:

• no view is specified in the input context

• a view is specified and its .is_primary() method return True

This predicate is usually used by contextual components that only want to appears for the primary view of an
entity.

class cubicweb.predicates.contextual

Return 1 if view’s contextual property is true

class cubicweb.predicates.specified_etype_implements(*expected_etypes, **kwargs)
Return non-zero score if the entity type specified by an ‘etype’ key searched in (by priority) input context kwargs
and request form parameters match a known entity type (case insensitivly), and it’s associated entity class is of
one of the type(s) given to the initializer. If multiple arguments are given, matching one of them is enough.

Note: as with is_instance, entity types should be given as string and the score will reflect class proximity so
the most specific object will be selected.

This predicate is usually used by views holding entity creation forms (since we’ve no result set to work on).

class cubicweb.predicates.attribute_edited(attribute, mode='all')
Scores if the specified attribute has been edited This is useful for selection of forms by the edit controller.

The initial use case is on a form, in conjunction with match_transition, which will not score at edit time:

is_instance('Version') & (match_transition('ready') |
attribute_edited('publication_date'))

class cubicweb.predicates.match_transition(*expected, **kwargs)
Return 1 if transition argument is found in the input context which has a .name attribute matching one of the
expected names given to the initializer.

This predicate is expected to be used to customise the status change form in the web ui.

class cubicweb.predicates.match_exception(*expected)
Return 1 if exception given as exc in the input context is an instance of one of the class given on instanciation of
this predicate.

class cubicweb.predicates.debug_mode

Return 1 if running in debug mode.

388 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

11.7 cubicweb.pyramid

Pyramid interface to CubicWeb

cubicweb.pyramid.wsgi_application_from_cwconfig(cwconfig, debugtoolbar=False)
Build a WSGI application from a cubicweb configuration

Parameters
• cwconfig – A CubicWeb configuration

• profile – Enable profiling. See Profiling and performance.

• profile_output – Profiling output filename. See Profiling and performance.

• profile_dump_every – Profiling number of requests before dumping the stats. See
Profiling and performance.

• debugtoolbar – Activate pyramid debugtoolbar when True.

Returns A fully operationnal WSGI application

cubicweb.pyramid.wsgi_application(instance_name=None, debug=None)
Build a WSGI application from a cubicweb instance name

Parameters
• instance_name – Name of the cubicweb instance (optional). If not provided,
CW_INSTANCE must exists.

• debug – Enable/disable the debug mode. If defined to True or False, overrides CW_DEBUG .

The following environment variables are used if they exist:

CW_INSTANCE

A CubicWeb instance name.

CW_DEBUG

If defined, the debugmode is enabled.

The function can be used as an entry-point for third-party wsgi containers. Below is a sample uswgi configuration
file:

[uwsgi]
http = 127.0.1.1:8080
env = CW_INSTANCE=myinstance
env = CW_DEBUG=1
module = cubicweb.pyramid:wsgi_application()
virtualenv = /home/user/.virtualenvs/myvirtualenv
processes = 1
threads = 8
stats = 127.0.0.1:9191
plugins = http,python

11.7. cubicweb.pyramid 389

Cubicweb Documentation, Release 3.38.10

11.7.1 cubicweb.pyramid.auth

CubicWeb AuthTkt authentication policy

When using the cubicweb.pyramid.auth module, which is the default in most cases, you may have to configure the
behaviour of these authentication policies using standard’s Pyramid configuration. You may want to configure in your
pyramid configuration file:

Session Authentication This is a AuthTktAuthenticationPolicy so you may overwrite default configura-
tion values by adding configuration entries using the prefix cubicweb.auth.authtkt.session.
Default values are:

cubicweb.auth.authtkt.session.hashalg = sha512
cubicweb.auth.authtkt.session.cookie_name = auth_tkt
cubicweb.auth.authtkt.session.timeout = 1200
cubicweb.auth.authtkt.session.reissue_time = 120
cubicweb.auth.authtkt.session.http_only = True
cubicweb.auth.authtkt.session.secure = True

Persistent Authentication This is also a AuthTktAuthenticationPolicy. It is used when persistent ses-
sions are activated (typically when using the cubicweb-rememberme cube). You may overwrite
default configuration values by adding configuration entries using the prefix cubicweb.auth.
authtkt.persistent. Default values are:

cubicweb.auth.authtkt.persistent.hashalg = sha512
cubicweb.auth.authtkt.persistent.cookie_name = pauth_tkt
cubicweb.auth.authtkt.persistent.max_age = 3600*24*30
cubicweb.auth.authtkt.persistent.reissue_time = 3600*24
cubicweb.auth.authtkt.persistent.http_only = True
cubicweb.auth.authtkt.persistent.secure = True

Warning: Legacy timeout values from the instance’s all-in-one.conf are not used at all (`` http-session-time``
and cleanup-session-time)

Secrets

There are a number of secrets to configure in pyramid.ini. They should be different one from each other, as explained
in `Pyramid's documentation`_.

For the record, regarding authentication:

cubicweb.auth.authtkt.session.secret This secret is used to encrypt the authentication cookie.

cubicweb.auth.authtkt.persistent.secret This secret is used to encrypt the persistent authentication
cookie.

cubicweb.pyramid.auth.includeme(config)
Activate the CubicWeb AuthTkt authentication policy.

Usually called via config.include('cubicweb.pyramid.auth').

See also cubicweb.pyramid.defaults

390 Chapter 11. API

http://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.AuthTktAuthenticationPolicy
http://docs.pylonsproject.org/projects/pyramid/en/latest/api/authentication.html#pyramid.authentication.AuthTktAuthenticationPolicy
https://forge.extranet.logilab.fr/cubicweb/cubes/rememberme

Cubicweb Documentation, Release 3.38.10

class cubicweb.pyramid.auth.UpdateLoginTimeAuthenticationPolicy

Bases: object

An authentication policy that update the user last_login_time.

The update is done in the ‘remember’ method, which is called by the login views login,

Usually used via includeme().

11.7.2 cubicweb.pyramid.bwcompat

Backward compatibility layer for CubicWeb to run as a Pyramid application.

cubicweb.pyramid.bwcompat.includeme(config)
Set up a tween app that will handle the request if the main application raises a HTTPNotFound exception.

This is to keep legacy compatibility for cubes that makes use of the cubicweb urlresolvers.

It provides, for now, support for cubicweb controllers, but this feature will be reimplemented separatly in a less
compatible way.

It is automatically included by the configuration system, but can be disabled in the Pyramid Settings file:

cubicweb.bwcompat = no

class cubicweb.pyramid.bwcompat.PyramidSessionHandler(appli)
A CW Session handler that rely on the pyramid API to fetch the needed informations.

It implements the cubicweb.web.application.CookieSessionHandler API.

class cubicweb.pyramid.bwcompat.CubicWebPyramidHandler(appli, cubicweb_config)
A Pyramid request handler that rely on a cubicweb instance to do the whole job

Parameters appli – A CubicWeb ‘Application’ object.

__call__(request)
Handler that mimics what CubicWebPublisher.main_handle_request and CubicWebPublisher.core_handle
do

class cubicweb.pyramid.bwcompat.TweenHandler(handler, registry)
A Pyramid tween handler that submit unhandled requests to a Cubicweb handler.

The CubicWeb handler to use is expected to be in the pyramid registry, at key 'cubicweb.handler'.

11.7.3 cubicweb.pyramid.core

Binding of CubicWeb connection to Pyramid request.

cubicweb.pyramid.core.includeme(config)
Enables the core features of Pyramid CubicWeb.

Automatically called by the ‘pyramid’ command, or via config.include('cubicweb.pyramid.code'). In
the later case, the following registry entries must be defined first:

‘cubicweb.config’ A cubicweb ‘config’ instance.

‘cubicweb.repository’ The correponding cubicweb repository.

‘cubicweb.registry’ The vreg.

11.7. cubicweb.pyramid 391

Cubicweb Documentation, Release 3.38.10

cubicweb.pyramid.core.cw_to_pyramid(request)
Context manager to wrap a call to the cubicweb API.

All CW exceptions will be transformed into their pyramid equivalent. When needed, some CW reponse bits may
be converted too (mainly headers)

cubicweb.pyramid.core.render_view(request, vid, **kwargs)
Helper function to render a CubicWeb view.

Parameters
• request – A pyramid request

• vid – A CubicWeb view id

• kwargs – Keyword arguments to select and instanciate the view

Returns The rendered view content

cubicweb.pyramid.core.repo_connect(request, repo, eid)
A lightweight version of cubicweb.server.repository.Repository.connect() that does not keep track
of opened sessions, removing the need of closing them

cubicweb.pyramid.core.get_principals(login, request)
Returns the group names of the authenticated user.

This function is meant to be used as an authentication policy callback.

It also pre-open the cubicweb session and put it in request._cw_cached_session for later usage by
_cw_session().

Note: If the default authentication policy is not used, make sure this function gets called by the active authenti-
cation policy.

Parameters
• login – A cubicweb user eid

• request – A pyramid request

Returns A list of group names

class cubicweb.pyramid.core.CubicWebPyramidRequest(request)
Bases: cubicweb_web.request.CubicWebRequestBase

A CubicWeb request that only wraps a pyramid request.

Parameters request – A pyramid request

Vreg Vregistry,

Form Forms value

Headers dict, request header

http_method()

returns ‘POST’, ‘GET’, ‘HEAD’, etc.

property message

Returns a ‘
’ joined list of the cubicweb current message and the default pyramid flash queue messages.

392 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

relative_path(includeparams=True)
return the normalized path of the request (ie at least relative to the instance’s root, but some other normal-
ization may be needed so that the returned path may be used to compare to generated urls

Parameters includeparams – boolean indicating if GET form parameters should be kept in
the path

setup_params(params)
WARNING: we’re intentionally leaving INTERNAL_FIELD_VALUE here

subclasses should overrides to

cubicweb.pyramid.core._cw_session(request)
Obtains a cw session from a pyramid request

Parameters request – A pyramid request

Returns type cubicweb.server.session.Session

Not meant for direct use, use request.cw_session instead.

cubicweb.pyramid.core._cw_cnx(request)
Obtains a cw session from a pyramid request

The connection will be commited or rolled-back in a request finish callback (this is temporary, we should make
use of the transaction manager in a later version).

Not meant for direct use, use request.cw_cnx instead.

Parameters request – A pyramid request

Returns type cubicweb.server.session.Connection
cubicweb.pyramid.core._cw_request(request)

Obtains a CubicWeb request wrapper for the pyramid request.

Parameters request – A pyramid request

Returns A CubicWeb request

Returns type CubicWebPyramidRequest
Not meant for direct use, use request.cw_request instead.

11.7.4 cubicweb.pyramid.defaults

Defaults for a classical CubicWeb instance.

cubicweb.pyramid.defaults.includeme(config)
Enable the defaults that make the application behave like a classical CubicWeb instance.

The following modules get included:

• cubicweb.pyramid.session

• cubicweb.pyramid.auth

• cubicweb.pyramid.login

It is automatically included by the configuration system, unless the following entry is added to the Pyramid
Settings file:

11.7. cubicweb.pyramid 393

Cubicweb Documentation, Release 3.38.10

cubicweb.defaults = no

11.7.5 cubicweb.pyramid.login

Provide login views that reproduce a classical CubicWeb behavior

cubicweb.pyramid.login.includeme(config)
Create the ‘login’ route (‘/login’) and load this module views

Views

cubicweb.pyramid.login.login_form(request)
Default view for the ‘login’ route.

Display the ‘login’ CubicWeb view, which is should be a login form

cubicweb.pyramid.login.login_password_login(request)
Handle POST of __login/__password on the ‘login’ route.

The authentication itself is delegated to the CubicWeb repository.

Request parameters:

Parameters
• __login – The user login (or email if allow-email-login is on.

• __password – The user password

• __setauthcookie – (optional) If defined and equal to ‘1’, set the authentication cookie
maxage to 1 week.

If not, the authentication cookie is a session cookie.

cubicweb.pyramid.login.login_already_loggedin(request)
‘login’ route view for Authenticated users.

Simply redirect the user to ‘/’.

11.7.6 cubicweb.pyramid.profile

11.7.7 cubicweb.pyramid.session

Web session when using pyramid

CubicWeb CWSession entity type so that sessions can be stored in the database, which allows to run a Cubicweb
instance without having to set up a session storage (like redis or memcache) solution.

However, for production systems, it is greatly advised to use such a storage solution for the sessions.

The handling of the sessions is made by pyramid (see the `pyramid's documentation on sessions`_ for more details).

For example, to set up a redis based session storage, you need the `pyramid-redis-session`_ package, then you must
configure pyramid to use this backend, by configuring the pyramid configuration file:

394 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

[main]
cubicweb.defaults = no # we do not want to load the default cw session handling

cubicweb.auth.authtkt.session.secret = <secret1>
cubicweb.auth.authtkt.persistent.secret = <secret2>
cubicweb.auth.authtkt.session.secure = yes
cubicweb.auth.authtkt.persistent.secure = yes

redis.sessions.secret = <secret3>
redis.sessions.prefix = <my-app>:

redis.sessions.url = redis://localhost:6379/0

pyramid.includes =
pyramid_redis_sessions
cubicweb.pyramid.auth
cubicweb.pyramid.login

Warning: If you want to be able to log in a CubicWeb application served by pyramid on a unsecured stream (typi-
cally when you start an instance in dev mode using a simple cubicweb-ctl pyramid -D -linfo myinstance),
you must set cubicweb.auth.authtkt.session.secure to no.

Secrets

There are a number of secrets to configure in pyramid.ini. They should be different one from each other, as explained
in `Pyramid's documentation`_.

For the record, regarding session handling:

cubicweb.session.secret This secret is used to encrypt the session’s data ID (data themselved are stored in
the backend, database or redis) when using the integrated (CWSession based) session data storage.

redis.session.secret This secret is used to encrypt the session’s data ID (data themselved are stored in the
backend, database or redis) when using redis as backend.

cubicweb.pyramid.session.includeme(config)
Activate the CubicWeb session factory.

Usually called via config.include('cubicweb.pyramid.auth').

See also cubicweb.pyramid.defaults

cubicweb.pyramid.session.CWSessionFactory(secret, cookie_name='session', max_age=None, path='/',
domain=None, secure=False, httponly=True,
set_on_exception=True, timeout=1200, reissue_time=120,
hashalg='sha512', salt='pyramid.session.', serializer=None)

A pyramid session factory that store session data in the CubicWeb database.

Storage is done with the ‘CWSession’ entity, which is provided by the ‘pyramid’ cube.

Warning: Although it provides a sane default behavior, this session storage has a serious overhead because
it uses RQL to access the database.

11.7. cubicweb.pyramid 395

Cubicweb Documentation, Release 3.38.10

Using pure SQL would improve a bit (it is roughly twice faster), but it is still pretty slow and thus not an
immediate priority.

It is recommended to use faster session factory (pyramid_redis_sessions for example) if you need speed.

11.7.8 cubicweb.pyramid.url_redirection

Url redirection using pyramid

This module allow to define redirection rules used by pyramid before route selection.

Each rule has to be added with add_rewriting_rule method in a pyramid includeme function to be used.

Example of usage :

def includeme(config):
config.add_redirection_rule(r'<a regex>', callback_method, keep_query_components)

The callback_method takes four arguments:

• a pyramid request ;

• the url that has to be matched by the rule ;

• a dictionnary containing all the named subgroups of the regex match ;

• a boolean to decide if we want to keep parameters of the query after the redirection (True by default).

It must return a string corresponding to the new url.

cubicweb.pyramid.url_redirection.includeme(config)
Add add_redirection_rule pyramid directive and url_redirection_tween pyramid tween handler to the pyramid
configuration.

cubicweb.pyramid.url_redirection.add_redirection_rule(config, rule, callback_method,
keep_query_component=True)

Declare a pyramid directive allowing to add a redirection rule. Each rewriting rule can then be added in the
includeme at the end of the file by using config.add_redirection_rule(rule, callback_method. :param config:
pyramid configuration, used by pyramid. :param rule: a regex used to match uri. :param callback_method: a
method which return the redirected uri. :param keep_query_component: if we want to keep the query component
of the URL (the part after the first “?”) after redirection.

cubicweb.pyramid.url_redirection.url_redirection_tween_factory(handler, registry)
A pyramid tween handler that browse each redirection_rules added with add_redirection_rule directive to find
if the current path matches a rule.

396 Chapter 11. API

http://pyramid-redis-sessions.readthedocs.org/en/latest/index.html

Cubicweb Documentation, Release 3.38.10

11.8 cubicweb.req

Base class for request/session

class cubicweb.req.RequestSessionBase(*args, **kwargs)

11.9 cubicweb.rset

The ResultSet class which is returned as result of an rql query

class cubicweb.rset.ResultSet(results, rql, args=None, description=None, variables=None)
A result set wraps a RQL query result. This object implements partially the list protocol to allow direct use as a
list of result rows.

Parameters
• rowcount (int) – number of rows in the result

• rows (list) – list of rows of result

• description (list) – result’s description, using the same structure as the result itself

• rql (str or unicode) – the original RQL query string

all(col=0)
iter on entities with eid in the col column of the result set

column_types(**kwargs)
return the list of different types in the column with the given col

Parameters col (int) – the index of the desired column

Return type list

Returns the different entities type found in the column

complete_entity(row, col=0, skip_bytes=True)
short cut to get an completed entity instance for a particular row (all instance’s attributes have been fetched)

description_struct(**kwargs)
return a list describing sequence of results with the same description, e.g. : [[0, 4, (‘Bug’,)] [[0, 4, (‘Bug’,),
[5, 8, (‘Story’,)] [[0, 3, (‘Project’, ‘Version’,)]]

entities(col=0)
iter on entities with eid in the col column of the result set

filtered_rset(filtercb, col=0)
filter the result set according to a given filtercb

Parameters
• filtercb (callable(entity)) – a callable which should take an entity as argument

and return False if it should be skipped, else True

• col (int) – the column index

Return type ResultSet

11.8. cubicweb.req 397

Cubicweb Documentation, Release 3.38.10

first(col=0)
Retrieve the first entity from the query.

If the result set is empty, raises NoResultError.

Parameters col (int) – The column localising the entity in the unique row

Returns the partially initialized Entity instance

get_entity(**kwargs)
convenience method for query retrieving a single entity, returns a partially initialized Entity instance.

Warning: Due to the cache wrapping this function, you should NEVER give row as a named param-
eter (i.e. rset.get_entity(0, 1) is OK but rset.get_entity(row=0, col=1) isn’t)

Parameters row,col (int, int) – row and col numbers localizing the entity among the
result’s table

Returns the partially initialized Entity instance

iter_rows_with_entities()

iterates over rows, and for each row eids are converted to plain entities

last(col=0)
Retrieve the last entity from the query.

If the result set is empty, raises NoResultError.

Parameters col (int) – The column localising the entity in the unique row

Returns the partially initialized Entity instance

limit(limit, offset=0, inplace=False)
limit the result set to the given number of rows optionally starting from an index different than 0

Parameters
• limit (int) – the maximum number of results

• offset (int) – the offset index

• inplace (bool) – if true, the result set is modified in place, else a new result set is
returned and the original is left unmodified

Return type ResultSet

limited_rql()

returns a printable rql for the result set associated to the object, with limit/offset correctly set according to
maximum page size and currently displayed page when necessary

one(col=0)
Retrieve exactly one entity from the query.

If the result set is empty, raises NoResultError. If the result set has more than one row, raises
MultipleResultsError.

Parameters col (int) – The column localising the entity in the unique row

Returns the partially initialized Entity instance

398 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

possible_actions(**kwargs)
Return possible actions on this result set. Should always be called with the same arguments so it may be
computed only once.

printable_rql()

return the result set’s origin rql as a string, with arguments substitued

related_entity(**kwargs)
given an cell of the result set, try to return a (entity, relation name) tuple to which this cell is linked.

This is especially useful when the cell is an attribute of an entity, to get the entity to which this attribute
belongs to.

searched_text(**kwargs)
returns the searched text in case of full-text search

Returns searched text or None if the query is not a full-text query

sorted_rset(keyfunc, reverse=False, col=0)
sorts the result set according to a given keyfunc

Parameters
• keyfunc (callable(entity)) – a callable which should take an entity as argument

and return the value used to compare and sort

• reverse (bool) – if the result should be reversed

• col (int) – the column index. if col = -1, the whole row are used

Return type ResultSet

split_rset(keyfunc=None, col=0, return_dict=False)
splits the result set in multiple result sets according to a given key

Parameters
• keyfunc (callable(entity or FinalType)) – a callable which should take a

value of the rset in argument and return the value used to group the value. If not
define, raw value of the specified columns is used.

• col (int) – the column index. if col = -1, the whole row are used

• return_dict (Boolean) – If true, the function return a mapping (key -> rset) instead
of a list of rset

Return type List of ResultSet or mapping of ResultSet

syntax_tree(**kwargs)
Return the cached syntax tree (rql.stmts.Union) for the originating query.

You can expect it to have solutions computed and it will be properly annotated. Since this is a cached
shared object, you must not modify it.

transformed_rset(transformcb)
the result set according to a given column types

Parameters
• transformcb – a callable which should take a row and its type description as param-

eters, and return the transformed row and type description.

• col (int) – the column index

11.9. cubicweb.rset 399

Cubicweb Documentation, Release 3.38.10

Return type ResultSet

11.10 cubicweb.web.views.urlpublishing

exception cubicweb.web.views.urlpublishing.PathDontMatch

exception used by url evaluators to notify they can’t evaluate a path

class cubicweb.web.views.urlpublishing.URLPublisherComponent(vreg, default_method='view')
Bases: cubicweb_web.view.Component

Associate url path to view identifier / rql queries, by applying a chain of urlpathevaluator components.

An evaluator is a URLPathEvaluator subclass with an .evaluate_path method taking the request object and the
path to publish as argument. It will either return a publishing method identifier and an rql query on success or
raise a PathDontMatch exception on failure. URL evaluators are called according to their priority attribute, with
0 as the greatest priority and greater values as lower priority. The first evaluator returning a result or raising
something else than PathDontMatch will stop the handlers chain.

process(req, path)
Given a URL (essentially characterized by a path on the server, but additional information may be found
in the request object), return a publishing method identifier (e.g. controller) and an optional result set.

Parameters
• req (cubicweb_web.request.CubicWebRequestBase) – the request object

• path (str) – the path of the resource to publish. If empty, None or “/” “view” is used
as the default path.

Return type tuple(str, cubicweb.rset.ResultSet or None)

Returns the publishing method identifier and an optional result set

Raises NotFound – if no handler is able to decode the given path

class cubicweb.web.views.urlpublishing.URLPathEvaluator(urlpublisher)
Bases: cubicweb_web.view.Component

class cubicweb.web.views.urlpublishing.RawPathEvaluator(urlpublisher)
Bases: cubicweb_web.views.urlpublishing.URLPathEvaluator

handle path of the form:

<publishing_method>?parameters...

class cubicweb.web.views.urlpublishing.EidPathEvaluator(urlpublisher)
Bases: cubicweb_web.views.urlpublishing.URLPathEvaluator

handle path with the form:

<eid>

class cubicweb.web.views.urlpublishing.RestPathEvaluator(urlpublisher)
Bases: cubicweb_web.views.urlpublishing.URLPathEvaluator

handle path with the form:

400 Chapter 11. API

Cubicweb Documentation, Release 3.38.10

<etype>[[/<attribute name>]/<attribute value>]*

class cubicweb.web.views.urlpublishing.URLRewriteEvaluator(urlpublisher)
Bases: cubicweb_web.views.urlpublishing.URLPathEvaluator

tries to find a rewrite rule to apply

URL rewrite rule definitions are stored in URLRewriter objects

class cubicweb.web.views.urlpublishing.ActionPathEvaluator(urlpublisher)
Bases: cubicweb_web.views.urlpublishing.URLPathEvaluator

handle path with the form:

<any evaluator path>/<action>

11.11 cubicweb.web.views.urlrewrite

class cubicweb.web.views.urlrewrite.URLRewriter(req, **extra)
Bases: cubicweb.appobject.AppObject

Base class for URL rewriters.

Url rewriters should have a rules dict that maps an input URI to something that should be used for rewriting.

The actual logic that defines how the rules dict is used is implemented in the rewrite method.

A priority attribute might be used to indicate which rewriter should be tried first. The higher the priority is, the
earlier the rewriter will be tried.

class cubicweb.web.views.urlrewrite.SimpleReqRewriter(req, **extra)
Bases: cubicweb_web.views.urlrewrite.URLRewriter

The SimpleReqRewriters uses a rules dict that maps input URI (regexp or plain string) to a dictionary to update
the request’s form.

If the input uri is a regexp, group substitution is allowed.

rewrite(req, uri)
for each input, output `in rules, if `uri matches input, req’s form is updated with output

class cubicweb.web.views.urlrewrite.SchemaBasedRewriter(req, **extra)
Bases: cubicweb_web.views.urlrewrite.URLRewriter

Here, the rules dict maps regexps or plain strings to callbacks that will be called with inputurl, uri, req, schema
as parameters.

11.11. cubicweb.web.views.urlrewrite 401

Cubicweb Documentation, Release 3.38.10

11.12 cubicweb.web

11.12.1 Exceptions

exception cubicweb.web.DirectResponse(response)
Used to supply a twitted HTTP Response directly

exception cubicweb.web.InvalidSession

raised when a session id is found but associated session is not found or invalid

exception cubicweb.web.PublishException(*args, **kwargs)
base class for publishing related exception

exception cubicweb.web.LogOut(url=None)
raised to ask for deauthentication of a logged in user

exception cubicweb.web.Redirect(location, status=HTTPStatus.SEE_OTHER)
raised to redirect the http request

exception cubicweb.web.StatusResponse(status, content='')

exception cubicweb.web.RequestError(*args, **kwargs)
raised when a request can’t be served because of a bad input

exception cubicweb.web.NothingToEdit(*args, **kwargs)
raised when an edit request doesn’t specify any eid to edit

exception cubicweb.web.ProcessFormError(*args, **kwargs)
raised when posted data can’t be processed by the corresponding field

exception cubicweb.web.NotFound(*args, **kwargs)
raised when something was not found. In most case, a 404 error should be returned

exception cubicweb.web.RemoteCallFailed(reason='', status=HTTPStatus.INTERNAL_SERVER_ERROR)
raised when a json remote call fails

402 Chapter 11. API

CHAPTER

TWELVE

CUBICWEB - THE SEMANTIC WEB IS A CONSTRUCTION GAME!

CubicWeb is a semantic web application framework, licensed under the LGPL, empowering developers to efficiently
build web applications by reusing components (called cubes) and following the well known object-oriented design
principles.

12.1 Main Features

• an engine driven by the explicit data model of the application,

• a query language named RQL similar to W3C’s SPARQL,

• a selection+view mechanism for semi-automatic XHTML/XML/JSON/text generation,

• a library of reusable components (data model and views) that fulfill common needs,

• the power and flexibility of the Python programming language,

• the reliability of SQL databases, LDAP directories and Mercurial for storage backends.

Created in early 2000s from an R&D effort and still maintained, supporting 100,000s of daily visits at some production
sites, CubicWeb is a proven end to end solution for semantic web application development promoting quality, reusability
and efficiency.

12.2 First steps

• From scratch:
– Install a CubicWeb environment

– Configure a CubicWeb environment

– Deploy a CubicWeb application

• Guides:
– Introduction to CubicWeb

– Basics: Building a simple blog with CubicWeb

– Advanced: Building a photo gallery with CubicWeb

403

https://www.python.org/

Cubicweb Documentation, Release 3.38.10

12.3 Cubicweb core principle

• Why cubicweb?
– The Core Concepts of CubicWeb

• Cubes:
– What is a Cube?

– Creating a new cube from scratch

– Standard structure for a cube

• Registries:
– What are registries

– How to use registries

• Data-centric framework:
– Data schema with YAMS

– Relation Query Language (RQL)

12.4 Routing

CubicWeb offers two different ways of routing : one internal to CubicWeb and a one with the pyramid framework.

• Principle:
– cubicweb and pyramid

– the CW request object

– the pyramid request object

– encapsulation of the CW request in the pyramid request

– bw_compat and the options to use, fallback when CW doesn’t find anything

• CubicWeb routing:
– url publishers

– url rewriters

• Pyramid routing:
– general principles

– predicates

– tweens

– content negociation

404 Chapter 12. CubicWeb - The Semantic Web is a construction game!

https://trypyramid.com/

Cubicweb Documentation, Release 3.38.10

12.5 Front development

• With Javascript / Typescript (using React):
– general principle

– how to install and integrate js tooling into CW

– cwelements

– rql browser

• With Pyramid:
– general integration with CubicWeb

– The renderers

– Jinja2 templates

– example of usages with CW

• With CubicWeb Views:
– Introduction

– Select a view with registers

– Facets

– How to use javascript inside CW views

– Customize CSS

• RDF:
– the RDF adaptator

– RDFLib integration into CW

12.6 Data model and management

• Data in CubicWeb:
– Data model

– Data as objects

• Data Import:
– Standard Import

– massive store

12.5. Front development 405

https://docs.pylonsproject.org/projects/pyramid/en/latest/narr/renderers.html
https://jinja.palletsprojects.com/

Cubicweb Documentation, Release 3.38.10

12.7 Security

• Security:
– The security model

– Permissions management with Pyramid

– csrf_protection

12.8 Migrate your schema

Each time the schema is updated, two action are needed : update the underlying tables and update the corresponding
data.

• Migrations:
– Execute and write migration script

– Debug script migration

12.9 Cubicweb configuration files

• Base configuration:
– The all-in-one.conf

– The Pyramid configuration

• Advanced configuration:
– The database connection pooler

12.10 Common Web application tools

• Test
– CubicWeb

– Pyramid

• Caching
– HTTP cache management

• Internationalization
– Localize your application

• Full text indexation
– RQL search bar

406 Chapter 12. CubicWeb - The Semantic Web is a construction game!

Cubicweb Documentation, Release 3.38.10

12.11 Development

• Command line tool:
– cubicweb-ctl tool

• Performances:
– Profiling your application

• Debugging:
– Command line options for debugging

– Debugging configuration directly in the code

– Pyramid debug toolbar

– Debug channels

• Good practices:
– tox

– check-manifest

– mypy

– flake8 et black

• CI:
– Gitlab-ci integration

12.12 System administration

• Deployment:
– Raw python deployment

– Working with Docker

– Working with Kubernetes

• Administration:
– Cubicweb-ctl tool

– Sources configuration

– Backup

12.11. Development 407

Cubicweb Documentation, Release 3.38.10

12.13 CubicWeb’s ecosystem

CubicWeb is based on different libraries, in which you may be interested:

• YAMS

• RQL

• logilab-common

• logilab-database

• logilab-constraints

• logilab-mtconverter

12.14 How to contribute

• Chat on the matrix room #cubicweb:matrix.logilab.org

• Visio Weekly meeting every Tuesday afternoon (UTC+1). The link is shared in the matrix room

• Discover on the blog

• Contribute on the forge

• Find published python modules on pypi

• Find published npm modules on npm

• Changelog

408 Chapter 12. CubicWeb - The Semantic Web is a construction game!

https://yams.readthedocs.io/
https://rql.readthedocs.io/
https://logilab-common.readthedocs.io/
https://logilab-database.readthedocs.io/
https://forge.extranet.logilab.fr/open-source/logilab-constraint
https://forge.extranet.logilab.fr/open-source/logilab-mtconverter
https://matrix.to/#/
https://matrix.to/#/
https://www.cubicweb.org/blog/1238
https://forge.extranet.logilab.fr/cubicweb/cubicweb
https://pypi.org/search/?q=cubicweb
https://www.npmjs.com/search?q=keywords:cubicweb

PYTHON MODULE INDEX

c
cubicweb, 369
cubicweb.appobject, 373
cubicweb.cwconfig, 97
cubicweb.cwvreg, 374
cubicweb.dataimport, 382
cubicweb.dataimport.importer, 191
cubicweb.dataimport.massive_store, 194
cubicweb.dataimport.stores, 192
cubicweb.entities.adapters, 149
cubicweb.predicates, 383
cubicweb.pyramid, 389
cubicweb.pyramid.auth, 390
cubicweb.pyramid.bwcompat, 391
cubicweb.pyramid.core, 391
cubicweb.pyramid.defaults, 393
cubicweb.pyramid.login, 394
cubicweb.pyramid.session, 394
cubicweb.pyramid.url_redirection, 396
cubicweb.req, 397
cubicweb.rset, 397
cubicweb.rtags, 231
cubicweb.server.hook, 163
cubicweb.web, 402
cubicweb.web.facet, 255
cubicweb.web.formfields, 243
cubicweb.web.formwidgets, 243
cubicweb.web.httpcache, 259
cubicweb.web.uihelper, 232
cubicweb.web.views.ajaxcontroller, 232
cubicweb.web.views.autoform, 238
cubicweb.web.views.baseviews, 221
cubicweb.web.views.formrenderers, 243
cubicweb.web.views.forms, 243
cubicweb.web.views.idownloadable, 230
cubicweb.web.views.navigation, 221
cubicweb.web.views.primary, 217
cubicweb.web.views.startup, 221
cubicweb.web.views.tableview, 222
cubicweb.web.views.uicfg, 232
cubicweb.web.views.urlpublishing, 226
cubicweb.web.views.urlrewrite, 401

cubicweb.web.views.wdoc, 231
cubicweb.wfutils, 142

l
logilab.common.registry, 377

409

Cubicweb Documentation, Release 3.38.10

410 Python Module Index

INDEX

Symbols
__call__() (cubicweb.pyramid.bwcompat.CubicWebPyramidHandler

method), 391
_cw_cnx() (in module cubicweb.pyramid.core), 393
_cw_request() (in module cubicweb.pyramid.core), 393
_cw_session() (in module cubicweb.pyramid.core), 393
-D

cubicweb-ctl-pyramid command line
option, 262

--debug
cubicweb-ctl-pyramid command line

option, 262
--debug-mode

cubicweb-ctl-pyramid command line
option, 262

--loglevel
cubicweb-ctl-pyramid command line

option, 263
--no-daemon

cubicweb-ctl-pyramid command line
option, 262

--profile-dump-every
cubicweb-ctl-pyramid command line

option, 263
--profile-output

cubicweb-ctl-pyramid command line
option, 263

--reload
cubicweb-ctl-pyramid command line

option, 262
--reload-interval

cubicweb-ctl-pyramid command line
option, 263

-l
cubicweb-ctl-pyramid command line

option, 263

A
AboutAction (class in cubicweb.web.views.wdoc), 231
ActionPathEvaluator (class in cu-

bicweb.web.views.urlpublishing), 227, 401
ActionsRegistry (class in cubicweb.cwvreg), 377

adaptable (class in cubicweb.predicates), 383
add_operation() (cubicweb.repoapi.Connection

method), 205
add_redirection_rule() (in module cu-

bicweb.pyramid.url_redirection), 396
add_relation() (cubicweb.repoapi.Connection

method), 205
add_relations() (cubicweb.repoapi.Connection

method), 205
added_in_transaction() (cu-

bicweb.repoapi.Connection method), 205
admin_request_from_url() (cu-

bicweb.devtools.testlib.CubicWebTC method),
179

all() (cubicweb.rset.ResultSet method), 397
allow_all_hooks_but() (cu-

bicweb.repoapi.Connection method), 205
allow_all_hooks_but() (cu-

bicweb.server.session.Connection method),
163, 204

allowed_massmail_keys() (cu-
bicweb.entities.adapters.IEmailableAdapter
method), 150

AndPredicate (class in logilab.common.registry), 381
anonymous_user (class in cubicweb.predicates), 387
any_rset (class in cubicweb.predicates), 384
AnyRsetView (class in cubicweb.view), 210
app (cubicweb.devtools.testlib.CubicWebTC property),

180
AppObject (class in cubicweb.appobject), 373
appobject_selectable (class in cubicweb.predicates),

383
as_email_context() (cu-

bicweb.entities.adapters.IEmailableAdapter
method), 150

assertSentEmail() (cu-
bicweb.devtools.testlib.CubicWebTC method),
180

attribute_edited (class in cubicweb.predicates), 388
authenticated_user (class in cubicweb.predicates),

387
AuthenticationError, 370

411

Cubicweb Documentation, Release 3.38.10

authors() (cubicweb.entities.adapters.IDublinCoreAdapter
method), 149

B
BadCommandUsage, 371
BadConnectionId, 370
Binary (class in cubicweb), 372
bookmark_role() (in module cubicweb.ext.rest), 62
breadcrumbs() (cubicweb.web.views.ibreadcrumbs.IBreadCrumbsAdapter

method), 230
build_suggestions() (cu-

bicweb_web.views.magicsearch.RQLSuggestionsBuilder
method), 208

C
cached_entities() (cubicweb.repoapi.Connection

method), 205
callfunc_every() (in module cubicweb.dataimport),

383
children() (cubicweb.entities.adapters.ITreeAdapter

method), 151
children_rql() (cubicweb.entities.adapters.ITreeAdapter

method), 151
cleanupworkflow() (in module cubicweb.wfutils), 142
clear() (cubicweb.repoapi.Connection method), 205
column_types() (cubicweb.rset.ResultSet method), 397
commit() (cubicweb.repoapi.Connection method), 205
commit_state (cubicweb.repoapi.Connection attribute),

205
complete_entity() (cubicweb.rset.ResultSet method),

397
compute_var_types() (cu-

bicweb.cwvreg.CWRegistryStore method),
375

configcls (cubicweb.devtools.testlib.CubicWebTC at-
tribute), 180

configuration value
cubicweb.auth.authtkt (bool), 264
cubicweb.auth.authtkt.persistent.cookie_name

(str), 265
cubicweb.auth.authtkt.persistent.max_age

(int), 265
cubicweb.auth.authtkt.persistent.reissue_time

(int), 265
cubicweb.auth.authtkt.persistent.samesite

(str), 265
cubicweb.auth.authtkt.session.cookie_name

(str), 264
cubicweb.auth.authtkt.session.reissue_time

(int), 264
cubicweb.auth.authtkt.session.samesite

(str), 264
cubicweb.auth.authtkt.session.timeout

(int), 264

cubicweb.auth.groups_principals (bool), 265
cubicweb.auth.update_login_time (bool), 264
cubicweb.bwcompat (bool), 264
cubicweb.bwcompat.errorhandler (bool), 264
cubicweb.debug (bool), 264
cubicweb.defaults (bool), 264
cubicweb.includes (list), 264
cubicweb.instance (string), 264

configuration_values (class in cubicweb.predicates),
383

ConfigurationError, 371
Connection (class in cubicweb.repoapi), 204
Connection (class in cubicweb.server.session), 162
ConnectionCubicWebRequestBase (class in cu-

bicweb.web.request), 208
ConnectionError, 370
contextual (class in cubicweb.predicates), 388
core_handle() (cubicweb.web.application.CubicWebPublisher

method), 200
count_lines() (in module cubicweb.dataimport), 383
create_user() (cubicweb.devtools.testlib.CubicWebTC

method), 180
creator() (cubicweb.entities.adapters.IDublinCoreAdapter

method), 149
critical() (cubicweb.appobject.AppObject method),

373
critical() (cubicweb.repoapi.Connection method),

205
critical() (cubicweb.web.application.CubicWebPublisher

method), 200
ctrl_publish() (cubicweb.devtools.testlib.CubicWebTC

method), 180
CtxComponentsRegistry (class in cubicweb.cwvreg),

377
cubicweb

module, 369
cubicweb.appobject

module, 373
cubicweb.auth.authtkt (bool)

configuration value, 264
cubicweb.auth.authtkt.persistent.cookie_name

(str)
configuration value, 265

cubicweb.auth.authtkt.persistent.max_age (int)
configuration value, 265

cubicweb.auth.authtkt.persistent.reissue_time
(int)

configuration value, 265
cubicweb.auth.authtkt.persistent.samesite

(str)
configuration value, 265

cubicweb.auth.authtkt.session.cookie_name
(str)

configuration value, 264

412 Index

Cubicweb Documentation, Release 3.38.10

cubicweb.auth.authtkt.session.reissue_time
(int)

configuration value, 264
cubicweb.auth.authtkt.session.samesite (str)

configuration value, 264
cubicweb.auth.authtkt.session.timeout (int)

configuration value, 264
cubicweb.auth.groups_principals (bool)

configuration value, 265
cubicweb.auth.update_login_time (bool)

configuration value, 264
cubicweb.bwcompat (bool)

configuration value, 264
cubicweb.bwcompat.errorhandler (bool)

configuration value, 264
cubicweb.cwconfig

module, 97
cubicweb.cwvreg

module, 374
cubicweb.dataimport

module, 382
cubicweb.dataimport.importer

module, 191
cubicweb.dataimport.massive_store

module, 194
cubicweb.dataimport.stores

module, 192
cubicweb.debug (bool)

configuration value, 264
cubicweb.defaults (bool)

configuration value, 264
cubicweb.entities.adapters

module, 149
cubicweb.includes (list)

configuration value, 264
cubicweb.instance (string)

configuration value, 264
cubicweb.predicates

module, 383
cubicweb.pyramid

module, 389
cubicweb.pyramid.auth

module, 390
cubicweb.pyramid.bwcompat

module, 391
cubicweb.pyramid.core

module, 391
cubicweb.pyramid.defaults

module, 393
cubicweb.pyramid.login

module, 394
cubicweb.pyramid.session

module, 394
cubicweb.pyramid.url_redirection

module, 396
cubicweb.req

module, 397
cubicweb.rset

module, 397
cubicweb.rtags

module, 231
cubicweb.server.hook

module, 163
cubicweb.web

module, 402
cubicweb.web.facet

module, 255
cubicweb.web.formfields

module, 243
cubicweb.web.formwidgets

module, 243
cubicweb.web.httpcache

module, 259
cubicweb.web.uihelper

module, 232
cubicweb.web.views.ajaxcontroller

module, 232
cubicweb.web.views.autoform

module, 238
cubicweb.web.views.baseviews

module, 221
cubicweb.web.views.formrenderers

module, 243
cubicweb.web.views.forms

module, 243
cubicweb.web.views.idownloadable

module, 230
cubicweb.web.views.navigation

module, 221
cubicweb.web.views.primary

module, 217
cubicweb.web.views.startup

module, 221
cubicweb.web.views.tableview

module, 222
cubicweb.web.views.uicfg

module, 232
cubicweb.web.views.urlpublishing

module, 226, 400
cubicweb.web.views.urlrewrite

module, 401
cubicweb.web.views.wdoc

module, 231
cubicweb.wfutils

module, 142
cubicweb-ctl-pyramid command line option

-D, 262
--debug, 262

Index 413

Cubicweb Documentation, Release 3.38.10

--debug-mode, 262
--loglevel, 263
--no-daemon, 262
--profile-dump-every, 263
--profile-output, 263
--reload, 262
--reload-interval, 263
-l, 263

CubicWebEventManager (class in cubicweb), 372
CubicWebException, 369
CubicWebPublisher (class in cu-

bicweb.web.application), 200
CubicWebPyramidHandler (class in cu-

bicweb.pyramid.bwcompat), 391
CubicWebPyramidRequest (class in cu-

bicweb.pyramid.core), 392
CubicWebRuntimeError, 369
CubicWebTC (class in cubicweb.devtools.testlib), 179
CW_DEBUG, 389
cw_fetch_order() (cubicweb.entity.Entity class

method), 145
cw_fetch_unrelated_order() (cubicweb.entity.Entity

class method), 146
cw_fti_index_rql_limit() (cu-

bicweb.entities.AnyEntity class method),
189

CW_INSTANCE, 389
CW_MODE, 98
cw_propval() (cubicweb.appobject.AppObject

method), 373
cw_to_pyramid() (in module cubicweb.pyramid.core),

391
CWRegistry (class in cubicweb.cwvreg), 376
CWRegistryStore (class in cubicweb.cwvreg), 374
CWSessionFactory() (in module cu-

bicweb.pyramid.session), 395
cwuri2eid() (in module cu-

bicweb.dataimport.importer), 192
CWUserRDFAdapter (class in cu-

bicweb.entities.adapters), 149

D
DataOperationMixIn (class in cubicweb.server.hook),

167
datapath() (logilab.common.testlib.TestCase class

method), 179
date() (cubicweb.entities.adapters.IDublinCoreAdapter

method), 149
DBG_ALL (in module cubicweb.server), 299
DBG_HOOKS (in module cubicweb.server), 299
DBG_MORE (in module cubicweb.server), 299
DBG_NONE (in module cubicweb.server), 299
DBG_OPS (in module cubicweb.server), 299
DBG_REPO (in module cubicweb.server), 299

DBG_RQL (in module cubicweb.server), 299
DBG_SQL (in module cubicweb.server), 299
debug() (cubicweb.appobject.AppObject method), 373
debug() (cubicweb.repoapi.Connection method), 205
debug() (cubicweb.web.application.CubicWebPublisher

method), 200
debug_mode (class in cubicweb.predicates), 388
debugged (class in cubicweb.server), 300
delete_relation() (cubicweb.repoapi.Connection

method), 205
deleted_in_transaction() (cu-

bicweb.repoapi.Connection method), 206
deny_all_hooks_but() (cubicweb.repoapi.Connection

method), 206
deny_all_hooks_but() (cu-

bicweb.server.session.Connection method),
163, 204

description() (cubicweb.entities.adapters.IDublinCoreAdapter
method), 149

description_struct() (cubicweb.rset.ResultSet
method), 397

different_type_children() (cu-
bicweb.entities.adapters.ITreeAdapter method),
151

DirectResponse, 402
download_content_type() (cu-

bicweb.entities.adapters.IDownloadableAdapter
method), 149

download_data() (cu-
bicweb.entities.adapters.IDownloadableAdapter
method), 149

download_encoding() (cu-
bicweb.entities.adapters.IDownloadableAdapter
method), 149

download_file_name() (cu-
bicweb.entities.adapters.IDownloadableAdapter
method), 149

download_url() (cubicweb.entities.adapters.IDownloadableAdapter
method), 149

DownloadBox (class in cu-
bicweb.web.views.idownloadable), 230

DownloadLinkView (class in cu-
bicweb.web.views.idownloadable), 230

DownloadView (class in cu-
bicweb.web.views.idownloadable), 230

drop_entity_cache() (cubicweb.repoapi.Connection
method), 206

E
EHTMLView (class in cu-

bicweb.web.views.idownloadable), 231
eid_reference_role() (in module cubicweb.ext.rest),

62
EidNotInSource, 370

414 Index

Cubicweb Documentation, Release 3.38.10

EidPathEvaluator (class in cu-
bicweb.web.views.urlpublishing), 227, 400

empty_rset (class in cubicweb.predicates), 384
entities() (cubicweb.rset.ResultSet method), 397
entity_cache() (cubicweb.repoapi.Connection

method), 206
entity_type() (cubicweb.repoapi.Connection

method), 206
EntityHTTPCacheManager (class in cu-

bicweb.web.httpcache), 260
EntityRDFAdapter (class in cu-

bicweb.entities.adapters), 149
EntityRQLInterfaceAdapter (class in cu-

bicweb.entities.adapters), 149
EntityStartupView (class in cubicweb.view), 210
EntityView (class in cubicweb.view), 210
environment variable

CW_DEBUG, 389
CW_INSTANCE, 389
CW_INSTANCES_DATA_DIR, 99
CW_INSTANCES_DIR, 99
CW_MODE, 98, 99
CW_RUNTIME_DIR, 99

error() (cubicweb.appobject.AppObject method), 374
error() (cubicweb.repoapi.Connection method), 206
error() (cubicweb.web.application.CubicWebPublisher

method), 200
EtagHTTPCacheManager (class in cu-

bicweb.web.httpcache), 259
etype_class() (cubicweb.cwvreg.ETypeRegistry

method), 376
ETypeRegistry (class in cubicweb.cwvreg), 376
exception() (cubicweb.appobject.AppObject method),

374
exception() (cubicweb.repoapi.Connection method),

206
exception() (cubicweb.web.application.CubicWebPublisher

method), 200
execute() (cubicweb.repoapi.Connection method), 206
ExecutionError, 371
expect_redirect() (cu-

bicweb.devtools.testlib.CubicWebTC method),
180

expect_redirect_handle_request() (cu-
bicweb.devtools.testlib.CubicWebTC method),
180

ExtEntitiesImporter (class in cu-
bicweb.dataimport.importer), 191

ExtEntity (class in cubicweb.dataimport.importer), 192

F
fake_form() (cubicweb.devtools.testlib.CubicWebTC

static method), 180

fetch_attrs() (cubicweb.cwvreg.ETypeRegistry
method), 377

fetch_config() (in module cubicweb.entities), 145
filtered_rset() (cubicweb.rset.ResultSet method),

397
first() (cubicweb.rset.ResultSet method), 397
Forbidden, 370
fti_containers() (cu-

bicweb.entities.adapters.IFTIndexableAdapter
method), 150

G
get_entity() (cubicweb.rset.ResultSet method), 398
get_option_value() (cubicweb.repoapi.Connection

method), 206
get_principals() (in module cubicweb.pyramid.core),

392
get_schema() (cubicweb.repoapi.Connection method),

206
get_session() (cubicweb.web.application.CubicWebPublisher

method), 200
get_words() (cubicweb.entities.adapters.IFTIndexableAdapter

method), 150

H
has_add_permission (class in cubicweb.predicates),

386
has_mimetype (class in cubicweb.predicates), 386
has_permission (class in cubicweb.predicates), 386
has_related_entities (class in cubicweb.predicates),

386
HelpAction (class in cubicweb.web.views.wdoc), 231
Hook (class in cubicweb.server.hook), 166
http_method() (cubicweb.pyramid.core.CubicWebPyramidRequest

method), 392
http_publish() (cubicweb.devtools.testlib.CubicWebTC

method), 180

I
IDownloadableAdapter (class in cu-

bicweb.entities.adapters), 149
IDownloadableOneLineView (class in cu-

bicweb.web.views.idownloadable), 230
IDownloadablePrimaryView (class in cu-

bicweb.web.views.idownloadable), 230
IDublinCoreAdapter (class in cu-

bicweb.entities.adapters), 149
IEmailableAdapter (class in cu-

bicweb.entities.adapters), 150
IFTIndexableAdapter (class in cu-

bicweb.entities.adapters), 150
ImageView (class in cu-

bicweb.web.views.idownloadable), 231

Index 415

Cubicweb Documentation, Release 3.38.10

import_entities() (cu-
bicweb.dataimport.importer.ExtEntitiesImporter
method), 191

includeme() (in module cubicweb.pyramid.auth), 390
includeme() (in module cubicweb.pyramid.bwcompat),

391
includeme() (in module cubicweb.pyramid.core), 391
includeme() (in module cubicweb.pyramid.defaults),

393
includeme() (in module cubicweb.pyramid.login), 394
includeme() (in module cubicweb.pyramid.session),

395
includeme() (in module cu-

bicweb.pyramid.url_redirection), 396
info() (cubicweb.appobject.AppObject method), 374
info() (cubicweb.repoapi.Connection method), 206
info() (cubicweb.web.application.CubicWebPublisher

method), 200
init_config() (cubicweb.devtools.testlib.CubicWebTC

class method), 180
init_properties() (cu-

bicweb.cwvreg.CWRegistryStore method),
375

initialization_completed() (cu-
bicweb.cwvreg.CWRegistryStore method),
375

initialization_completed() (cu-
bicweb.cwvreg.ETypeRegistry method), 377

InlineHelpView (class in cubicweb.web.views.wdoc),
231

innerSkip() (logilab.common.testlib.TestCase method),
179

INotifiableAdapter (class in cu-
bicweb.entities.adapters), 150

InstancesRegistry (class in cubicweb.cwvreg), 376
InternalError, 369
InvalidSession, 402
is_hook_activated() (cubicweb.repoapi.Connection

method), 206
is_hook_category_activated() (cu-

bicweb.repoapi.Connection method), 206
is_in_state (class in cubicweb.predicates), 386
is_instance (class in cubicweb.predicates), 384
is_leaf() (cubicweb.entities.adapters.ITreeAdapter

method), 151
is_reload_needed() (cu-

bicweb.cwvreg.CWRegistryStore method),
375

is_root() (cubicweb.entities.adapters.ITreeAdapter
method), 151

ISerializableAdapter (class in cu-
bicweb.entities.adapters), 150

items() (cubicweb.cwvreg.CWRegistryStore method),
375

iter_rows_with_entities() (cu-
bicweb.rset.ResultSet method), 398

iterchildren() (cubicweb.entities.adapters.ITreeAdapter
method), 151

iteritems() (cubicweb.cwvreg.CWRegistryStore
method), 375

iterparents() (cubicweb.entities.adapters.ITreeAdapter
method), 151

itervalues() (cubicweb.cwvreg.CWRegistryStore
method), 375

ITreeAdapter (class in cubicweb.entities.adapters), 150
IUserFriendlyCheckConstraint (class in cu-

bicweb.entities.adapters), 151
IUserFriendlyError (class in cu-

bicweb.entities.adapters), 151
IUserFriendlyUniqueTogether (class in cu-

bicweb.entities.adapters), 151

L
language() (cubicweb.entities.adapters.IDublinCoreAdapter

method), 149
last() (cubicweb.rset.ResultSet method), 398
LateOperation (class in cubicweb.server.hook), 167
limit() (cubicweb.rset.ResultSet method), 398
limited_rql() (cubicweb.rset.ResultSet method), 398
list_actions_for() (cu-

bicweb.devtools.testlib.CubicWebTC method),
180

list_boxes_for() (cu-
bicweb.devtools.testlib.CubicWebTC method),
180

list_startup_views() (cu-
bicweb.devtools.testlib.CubicWebTC method),
181

list_views_for() (cu-
bicweb.devtools.testlib.CubicWebTC method),
181

load_file() (cubicweb.cwvreg.CWRegistryStore
method), 375

locate_all_files() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

locate_doc_file() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

locate_resource() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

log_handle_request() (cu-
bicweb.web.application.CubicWebPublisher
method), 200

logilab.common.registry
module, 377

416 Index

Cubicweb Documentation, Release 3.38.10

login_already_loggedin() (in module cu-
bicweb.pyramid.login), 394

login_form() (in module cubicweb.pyramid.login), 394
login_password_login() (in module cu-

bicweb.pyramid.login), 394
LogOut, 402
long_title() (cubicweb.entities.adapters.IDublinCoreAdapter

method), 149

M
main_handle_request() (cu-

bicweb.web.application.CubicWebPublisher
method), 201

main_handle_request() (cu-
bicweb_web.application.CubicWebPublisher
method), 200

main_template() (cubicweb.cwvreg.ViewsRegistry
method), 377

MassiveObjectStore (class in cu-
bicweb.dataimport.massive_store), 194

match_context (class in cubicweb.predicates), 388
match_context_prop (class in cubicweb.predicates),

387
match_exception (class in cubicweb.predicates), 388
match_form_params (class in cubicweb.predicates), 387
match_kwargs (class in cubicweb.predicates), 383
match_rtype (class in cubicweb.server.hook), 166
match_rtype_sets (class in cubicweb.server.hook), 166
match_search_state (class in cubicweb.predicates),

387
match_transition (class in cubicweb.predicates), 388
match_user_groups (class in cubicweb.predicates), 387
match_view (class in cubicweb.predicates), 388
MaxAgeHTTPCacheManager (class in cu-

bicweb.web.httpcache), 259
maxDiff (logilab.common.testlib.TestCase attribute),

179
message (cubicweb.pyramid.core.CubicWebPyramidRequest

property), 392
MetadataGenerator (class in cu-

bicweb.dataimport.stores), 193
module

cubicweb, 369
cubicweb.appobject, 373
cubicweb.cwconfig, 97
cubicweb.cwvreg, 374
cubicweb.dataimport, 382
cubicweb.dataimport.importer, 191
cubicweb.dataimport.massive_store, 194
cubicweb.dataimport.stores, 192
cubicweb.entities.adapters, 149
cubicweb.predicates, 383
cubicweb.pyramid, 389
cubicweb.pyramid.auth, 390

cubicweb.pyramid.bwcompat, 391
cubicweb.pyramid.core, 391
cubicweb.pyramid.defaults, 393
cubicweb.pyramid.login, 394
cubicweb.pyramid.session, 394
cubicweb.pyramid.url_redirection, 396
cubicweb.req, 397
cubicweb.rset, 397
cubicweb.rtags, 231
cubicweb.server.hook, 163
cubicweb.web, 402
cubicweb.web.facet, 255
cubicweb.web.formfields, 243
cubicweb.web.formwidgets, 243
cubicweb.web.httpcache, 259
cubicweb.web.uihelper, 232
cubicweb.web.views.ajaxcontroller, 232
cubicweb.web.views.autoform, 238
cubicweb.web.views.baseviews, 221
cubicweb.web.views.formrenderers, 243
cubicweb.web.views.forms, 243
cubicweb.web.views.idownloadable, 230
cubicweb.web.views.navigation, 221
cubicweb.web.views.primary, 217
cubicweb.web.views.startup, 221
cubicweb.web.views.tableview, 222
cubicweb.web.views.uicfg, 232
cubicweb.web.views.urlpublishing, 226, 400
cubicweb.web.views.urlrewrite, 401
cubicweb.web.views.wdoc, 231
cubicweb.wfutils, 142
logilab.common.registry, 377

multi_columns_rset (class in cubicweb.predicates),
384

multi_etypes_rset (class in cubicweb.predicates), 384
multi_lines_rset (class in cubicweb.predicates), 384
MultipleResultsError, 371

N
new_access() (cubicweb.devtools.testlib.CubicWebTC

method), 181
no_cnx (class in cubicweb.predicates), 387
NoHookRQLObjectStore (class in cu-

bicweb.dataimport.stores), 193
NoHookRQLObjectStore (in module cu-

bicweb.dataimport), 383
NoHTTPCacheManager (class in cu-

bicweb.web.httpcache), 259
non_final_entity (class in cubicweb.predicates), 384
none_rset (class in cubicweb.predicates), 384
nonempty_rset (class in cubicweb.predicates), 384
NoResultError, 371
NoSelectableObject (class in logi-

lab.common.registry), 382

Index 417

Cubicweb Documentation, Release 3.38.10

NotAnEntity, 371
NotFound, 402
NothingToEdit, 402
notification_references() (cu-

bicweb.entities.adapters.INotifiableAdapter
method), 150

NotificationView (class in cu-
bicweb.sobjects.notification), 172

notify_on_commit() (in module cu-
bicweb.hooks.notification), 172

NotPredicate (class in logilab.common.registry), 381
NullStore (class in cubicweb.dataimport.stores), 193

O
object_by_id() (logilab.common.registry.Registry

method), 380
objectify_predicate() (in module logi-

lab.common.registry), 381
ObjectNotFound (class in logilab.common.registry),

382
on_fire_transition() (in module cu-

bicweb.predicates), 387
one() (cubicweb.rset.ResultSet method), 398
one_etype_rset (class in cubicweb.predicates), 384
one_line_rset (class in cubicweb.predicates), 384
onevent() (in module cubicweb), 372
Operation (class in cubicweb.server.hook), 166
optval() (logilab.common.testlib.TestCase method),

179
OrPredicate (class in logilab.common.registry), 381

P
paginated_rset (class in cubicweb.predicates), 384
parent() (cubicweb.entities.adapters.ITreeAdapter

method), 151
parent_entity() (cu-

bicweb.web.views.ibreadcrumbs.IBreadCrumbsAdapter
method), 230

parse() (cubicweb.cwvreg.CWRegistryStore method),
375

partial_has_related_entities (class in cu-
bicweb.predicates), 386

partial_relation_possible (class in cu-
bicweb.predicates), 386

path() (cubicweb.entities.adapters.ITreeAdapter
method), 151

PathDontMatch, 400
pending_operations (cubicweb.repoapi.Connection

attribute), 206
poss_visible_objects() (cu-

bicweb.cwvreg.ActionsRegistry method),
377

poss_visible_objects() (cu-
bicweb.cwvreg.CtxComponentsRegistry

method), 377
poss_visible_objects() (cu-

bicweb.cwvreg.CWRegistry method), 376
possible_actions() (cubicweb.rset.ResultSet

method), 398
possible_objects() (logi-

lab.common.registry.Registry method), 380
possible_views() (cubicweb.cwvreg.ViewsRegistry

method), 377
pre_setup_database() (cu-

bicweb.devtools.testlib.CubicWebTC class
method), 181

Predicate (class in logilab.common.registry), 381
prefixiter() (cubicweb.entities.adapters.ITreeAdapter

method), 151
primary_view (class in cubicweb.predicates), 388
printable_rql() (cubicweb.rset.ResultSet method),

399
process() (cubicweb.web.views.urlpublishing.URLPublisherComponent

method), 226, 400
ProcessFormError, 402
ProgrammingError, 369
property_info() (cubicweb.cwvreg.CWRegistryStore

method), 375
property_value() (cubicweb.cwvreg.CWRegistryStore

method), 375
PublishException, 402
PyramidSessionHandler (class in cu-

bicweb.pyramid.bwcompat), 391

Q
QueryError, 371

R
RawPathEvaluator (class in cu-

bicweb.web.views.urlpublishing), 227, 400
Redirect, 402
redirect_handler() (cu-

bicweb.web.application.CubicWebPublisher
method), 201

register() (cubicweb.cwvreg.CWRegistryStore
method), 375

register() (cubicweb.cwvreg.ETypeRegistry method),
377

register() (logilab.common.registry.Registry method),
380

register() (logilab.common.registry.RegistryStore
method), 379

register_all() (cubicweb.cwvreg.CWRegistryStore
method), 375

register_all() (logi-
lab.common.registry.RegistryStore method),
379

418 Index

Cubicweb Documentation, Release 3.38.10

register_and_replace() (cu-
bicweb.cwvreg.CWRegistryStore method),
375

register_and_replace() (logi-
lab.common.registry.RegistryStore method),
379

register_modnames() (logi-
lab.common.registry.RegistryStore method),
379

register_property() (cu-
bicweb.cwvreg.CWRegistryStore method),
375

Registry (class in logilab.common.registry), 380
REGISTRY_FACTORY (cubicweb.cwvreg.CWRegistryStore

attribute), 374
RegistryException (class in logilab.common.registry),

382
RegistryNotFound (class in logilab.common.registry),

382
RegistryStore (class in logilab.common.registry), 378
related_entity() (cubicweb.rset.ResultSet method),

399
relation_possible (class in cubicweb.predicates), 385
RelationMapping (class in cu-

bicweb.dataimport.importer), 192
relative_path() (cu-

bicweb.pyramid.core.CubicWebPyramidRequest
method), 392

reload() (cubicweb.cwvreg.CWRegistryStore method),
375

reload_if_needed() (cu-
bicweb.cwvreg.CWRegistryStore method),
376

remote_calling() (cu-
bicweb.devtools.testlib.CubicWebTC method),
181

RemoteCallFailed, 402
render_view() (in module cubicweb.pyramid.core), 392
repo (cubicweb.repoapi.Connection attribute), 206
repo_connect() (in module cubicweb.pyramid.core),

392
RepositoryError, 369
requestcls (cubicweb.devtools.testlib.CubicWebTC at-

tribute), 181
RequestError, 402
RequestSessionBase (class in cubicweb.req), 204, 397
reset() (cubicweb.cwvreg.CWRegistryStore method),

376
RestPathEvaluator (class in cu-

bicweb.web.views.urlpublishing), 227, 400
ResultSet (class in cubicweb.rset), 397
rewrite() (cubicweb.web.views.urlrewrite.SimpleReqRewriter

method), 228, 401
RichString() (in module yams.buildobjs), 126

rollback() (cubicweb.repoapi.Connection method),
207

root() (cubicweb.entities.adapters.ITreeAdapter
method), 151

rql_condition (class in cubicweb.predicates), 385
rql_role() (in module cubicweb.ext.rest), 62
rqlhelper (cubicweb.cwvreg.CWRegistryStore prop-

erty), 376
RQLObjectStore (class in cubicweb.dataimport.stores),

193
RQLObjectStore (in module cubicweb.dataimport), 383
RQLSuggestionsBuilder (class in cu-

bicweb.web.views.magicsearch), 208
running_hooks_ops() (cubicweb.repoapi.Connection

method), 207

S
same_type_children() (cu-

bicweb.entities.adapters.ITreeAdapter method),
151

schema (cubicweb.cwvreg.CWRegistry property), 376
schema (cubicweb.devtools.testlib.CubicWebTC prop-

erty), 181
schema: created_by

owned_by; is; is_instance;, 138
schema: eid

creation_date; modification_data; cwuri,
138

schema: meta-data;, 138
SchemaBasedRewriter (class in cu-

bicweb.web.views.urlrewrite), 228, 401
score_entity (class in cubicweb.predicates), 385
searched_text() (cubicweb.rset.ResultSet method),

399
SecurityError, 369
select() (cubicweb.cwvreg.CWRegistry method), 376
select() (logilab.common.registry.Registry method),

380
select_or_none() (logilab.common.registry.Registry

method), 380
selected() (cubicweb.cwvreg.InstancesRegistry

method), 376
set_debug() (in module cubicweb.server), 299
set_description() (logilab.common.testlib.TestCase

method), 179
set_entity_cache() (cubicweb.repoapi.Connection

method), 207
set_schema() (cubicweb.cwvreg.CWRegistryStore

method), 376
setdefault() (cubicweb.cwvreg.CWRegistryStore

method), 376
setUp() (cubicweb.devtools.testlib.CubicWebTC

method), 181

Index 419

Cubicweb Documentation, Release 3.38.10

setup_database() (cu-
bicweb.devtools.testlib.CubicWebTC method),
181

setup_params() (cubicweb.pyramid.core.CubicWebPyramidRequest
method), 393

setup_workflow() (in module cubicweb.wfutils), 142
setUpClass() (cubicweb.devtools.testlib.CubicWebTC

class method), 181
shortDescription() (logilab.common.testlib.TestCase

method), 179
SimpleReqRewriter (class in cu-

bicweb.web.views.urlrewrite), 228, 401
sorted_rset (class in cubicweb.predicates), 384
sorted_rset() (cubicweb.rset.ResultSet method), 399
SourceException, 369
specified_etype_implements (class in cu-

bicweb.predicates), 388
split_rset() (cubicweb.rset.ResultSet method), 399
StartupView (class in cubicweb.view), 210
static_directory (cu-

bicweb.web.webconfig.WebConfiguration
attribute), 260

static_file_add() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

static_file_del() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

static_file_exists() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

static_file_open() (cu-
bicweb.web.webconfig.WebConfiguration
method), 260

StatusResponse, 402
subscribe_to_debug_channel() (in module cu-

bicweb.debug), 196
syntax_tree() (cubicweb.rset.ResultSet method), 399
system_sql() (cubicweb.repoapi.Connection method),

207

T
tearDown() (cubicweb.devtools.testlib.CubicWebTC

method), 181
temporary_permissions() (cu-

bicweb.devtools.testlib.CubicWebTC method),
181

TestCase (class in logilab.common.testlib), 179
title() (cubicweb.entities.adapters.IDublinCoreAdapter

method), 150
traced_selection (class in logilab.common.registry),

382
transaction_actions() (cu-

bicweb.repoapi.Connection method), 207

transaction_data (cubicweb.repoapi.Connection at-
tribute), 207

transaction_info() (cubicweb.repoapi.Connection
method), 207

transformed_rset() (cubicweb.rset.ResultSet
method), 399

triples() (cubicweb.entities.adapters.CWUserRDFAdapter
method), 149

triples() (cubicweb.entities.adapters.EntityRDFAdapter
method), 149

TweenHandler (class in cubicweb.pyramid.bwcompat),
391

type() (cubicweb.entities.adapters.IDublinCoreAdapter
method), 150

typed_value() (cubicweb.cwvreg.CWRegistryStore
method), 376

U
ucsvreader() (in module cubicweb.dataimport), 383
ucsvreader_pb() (in module cubicweb.dataimport),

383
Unauthorized, 370
undo_transaction() (cubicweb.repoapi.Connection

method), 207
undoable_transactions() (cu-

bicweb.repoapi.Connection method), 207
UndoTransactionException, 371
UniqueTogetherError, 370
UnknownEid, 370
UnknownProperty, 370
unregister() (logilab.common.registry.Registry

method), 380
unregister() (logilab.common.registry.RegistryStore

method), 379
unsubscribe_to_debug_channel() (in module cu-

bicweb.debug), 196
update_schema() (cubicweb.cwvreg.CWRegistryStore

method), 376
UpdateLoginTimeAuthenticationPolicy (class in

cubicweb.pyramid.auth), 390
uri (cubicweb.entities.adapters.EntityRDFAdapter

attribute), 149
url_publish() (cubicweb.devtools.testlib.CubicWebTC

method), 182
url_redirection_tween_factory() (in module cu-

bicweb.pyramid.url_redirection), 396
URLPathEvaluator (class in cu-

bicweb.web.views.urlpublishing), 400
URLPublisherComponent (class in cu-

bicweb.web.views.urlpublishing), 226, 400
URLRewriteEvaluator (class in cu-

bicweb.web.views.urlpublishing), 227, 401
URLRewriter (class in cubicweb.web.views.urlrewrite),

228, 401

420 Index

Cubicweb Documentation, Release 3.38.10

use_extid_as_cwuri() (in module cu-
bicweb.dataimport.importer), 192

user_property_keys() (cu-
bicweb.cwvreg.CWRegistryStore method),
376

V
validation_error() (in module cubicweb), 372
ValidationError, 371
values() (cubicweb.cwvreg.CWRegistryStore method),

376
View (class in cubicweb.view), 209
view() (cubicweb.devtools.testlib.CubicWebTC method),

182
ViewsRegistry (class in cubicweb.cwvreg), 377
vregistry: registration_callback, 119

W
warning() (cubicweb.appobject.AppObject method),

374
warning() (cubicweb.repoapi.Connection method), 207
warning() (cubicweb.web.application.CubicWebPublisher

method), 201
wsgi_application() (in module cubicweb.pyramid),

389
wsgi_application_from_cwconfig() (in module cu-

bicweb.pyramid), 389

Y
yes (class in cubicweb.appobject), 383
yes (class in logilab.common.registry), 381

Index 421

	A little history…
	The Core Concepts of CubicWeb
	Cubes
	Instances
	Data Repository
	Web Engine
	Schema (Data Model)
	Registries and application objects
	Application objects
	Selectors
	The registry

	The RQL query language
	Result set

	Views
	Hooks and operations

	Tutorials
	Building a simple blog with CubicWeb
	Some vocabulary
	Get a blog running in five minutes!
	About file system permissions
	Instance parameters

	Discovering the web interface
	Minimal configuration
	Adding entities
	Adding a blog
	Adding a blog post

	About UI auto-adaptation
	Digging deeper

	Customizing your application
	Creating your own cube
	Cube metadata
	Extending the data model
	Defining our model
	Applying changes from the model into our instance

	Defining your views
	Changing the layout of the application
	Primary view customization
	Write entities to add logic in your data
	Extending the application by using more cubes!

	What’s next?

	Building a photo gallery with CubicWeb
	Desired features
	Cube creation and schema definition
	Step 1: creating a virtual environment
	Step 2: creating a new cube for my web site
	Step 3: pick building blocks into existing cubes
	Step 4: glue everything together in my cube’s schema
	Step 5: creating the instance

	Security, testing and migration
	Step 1: configuring security into the schema
	Step 2: security propagation in hooks
	Step 3: testing our security
	Step 4: writing the migration script and migrating the instance

	Storing images on the file-system
	Step 1: configuring the BytesFileSystem storage
	Step 2: importing some data into the instance
	Conclusion

	Let’s make it more user friendly
	Step 1: let’s improve site’s usability for our visitors
	Step 2: providing a custom index page
	Step 3: more navigation improvements
	Step 4: preparing the release and migrating the instance

	Building my photos web site with CubicWeb part V: let’s make it even more user friendly
	Step 1: tired of the default look?
	Step 2: configuring boxes
	Step 3: configuring facets
	Conclusion

	Use Windmill with CubicWeb
	Installation
	Windmill
	X dummy

	Windmill usage
	Record your use case

	Integrate Windmill tests into CubicWeb
	Set environment
	Run your tests
	Edit your tests
	Best practises

	Caveats
	File Upload

	Preferences

	Writing text reports with RestructuredText
	Importing relational data into a CubicWeb instance
	Introduction
	Building a data model
	Building a custom data parser
	Mapping the data to the schema
	Importing the data
	Using the stores in dataimport
	Using the MassiveObjectStore in the dataio cube
	Application to the Diseasome data
	Import setup
	Timing benchmarks

	Conclusions

	Create a Website from scratch with CubicWeb
	Introduction
	Getting started
	Installation of CubicWeb and dependencies
	Create a cube
	Create and start our instance
	Defining our data model
	Adding data
	Customize museum primary view
	Use entities.py to add more logic
	Conclusion

	Enhance views
	Pyramid and Jinja2
	React in a CubicWeb view
	React in a Pyramid view

	Data management with CubicWeb
	Import data
	RDF serialisation
	Content negotiation

	Setup and Administration
	Install a CubicWeb environment
	Installing Dependencies
	Installing CubicWeb
	Docker install
	Virtualenv install
	pip install
	Install from source
	Install from version control system

	Installing cubes

	Configure a CubicWeb environment
	Databases configuration
	PostgreSQL
	Database cluster
	Database authentication
	Database creation

	SQLite

	Cubicweb resources configuration
	Resource mode
	Standard resource mode
	Within virtual environment
	Custom resource location
	Setting Cubicweb Mode
	Development Mode (source)
	Development Mode (virtualenv)

	Environment configuration
	Python
	CubicWeb

	Deploy a CubicWeb application
	Deployment with uwsgi
	Apache configuration

	Deployment with SaltStack
	Deployment with Docker
	Deployment with Kubernetes

	cubicweb-ctl tool
	Listing available cubes and instance
	Creation of a new cube
	Create an instance
	Command to create/initialize an instance database
	Run an instance
	Commands to maintain instances
	Commands to maintain i18n catalogs
	Other commands

	Creation of your first instance
	Instance creation
	Instance administration
	start / stop
	upgrade

	Configure an instance
	Configuring the Web server
	Setting up the web client
	RQL server configuration
	Configuring e-mail
	Configuring logging
	Configuring persistent properties
	Cross-Origin Resource Sharing

	User interface for web site configuration
	Navigation
	UI
	Actions
	Boxes
	Components
	Contextual components

	Multiple sources of data
	LDAP integration
	Overview
	Configuration of an LDAPfeed source
	Options of an LDAPfeed source
	Other notes

	RQL logs

	Backend Development
	Cubes
	What is a Cube?
	Standard structure for a cube
	The site_cubicweb.py files
	The __pkginfo__.py file

	The setup.py file
	The __init__.py file
	migration/precreate.py and migration/postcreate.py
	External resources such as image, javascript and css files
	Out-of the box testing
	Packaging and distribution

	Creating a new cube from scratch
	Available cubes
	Base entity types
	Classification
	Other features

	The Registry, selectors and application objects
	The CWRegistryStore
	Details of the recording process
	API for objects registration
	Runtime objects selection
	API for objects selections

	The AppObject class
	Predicates and selectors
	Using and combining existant predicates
	Example
	When to use selectors?
	Defining your own predicates
	Debugging selection

	Base predicates
	Bare predicates
	Result set predicates
	Entity predicates
	Logged user predicates
	Web request predicates
	Other predicates

	Data model
	Yams schema
	Overview
	Entity type
	Relation type
	Relation definition
	Properties
	Constraints
	General Constraints
	RQL Based Constraints

	The security model
	Default permissions
	The standard user groups
	Use of RQL expression for write permissions
	Use of RQL expression for reading rights
	Important notes about write permissions checking

	Derived attributes and relations
	Motivating use cases
	Computed (or reified) relations
	Computed (or synthesized) attribute

	Using computed attributes and relations
	Computed (or reified) relations
	Computed (or synthesized) attributes

	API and implementation
	Representation in the data backend
	Yams API
	Migration

	Defining your schema using yams
	Entity type definition
	Definition of relations
	Handling schema changes

	Metadata
	Pre-defined entities in the library
	Entity types used to store the schema
	Entity types used to manage users and permissions
	Entity types used to manage workflows
	Other entity types

	Defining a Workflow
	General
	Setting up a workflow
	Creating states, transitions and group permissions
	Two bits of warning

	Alternative way to declare workflows

	Data as objects
	Access to persistent data
	The AnyEntity class
	Inheritance
	Application logic
	Loaded attributes and default sorting management
	Interfaces and Adapters
	Specializing and binding an adapter
	Converting code from Interfaces/Mixins to Adapters
	Adapters defined in the library

	How to use entities objects and adapters
	Anatomy of an entity class

	Core APIs
	Request and ResultSet methods
	Request methods
	Result set methods

	Repository customization
	Sessions
	Connections
	Kinds of connections
	Python/RQL API
	Executing RQL queries from a view or a hook
	Proper usage of .execute
	The ResultSet API

	Authentication and management of sessions
	Writing authentication plugins
	Repository authentication plugins
	Web authentication plugins
	Full Session and Connection API

	Hooks and Operations
	Generalities
	Hooks
	Operations

	Events
	Entity modification related events
	Relation modification related events
	Non data events

	API
	Hooks control
	Hooks specific predicates
	Hooks and operations classes

	Example using dataflow hooks
	Inter-instance communication
	Hooks writing tips
	Reminder
	How to choose between a before and an after event ?
	Validation Errors
	Checking for object created/deleted in the current transaction
	Peculiarities of inlined relations

	Notifications management
	API details

	Tasks

	Tests
	Unit tests
	Unit test by example
	Managing connections or users

	Email notifications tests
	Visible actions tests

	Automatic views testing
	Cache heavy database setup
	Testing on a real-life database
	Testing with other cubes
	Literate programming
	Skipping a scenario
	Passing paramaters

	Test APIS
	Using Pytest
	Using the TestCase base class
	CubicWebTC API

	What you need to know about request and session
	The _cw attribute
	Request, session and transaction

	Migration
	Migration scripts management
	Base context
	New cube dependencies
	Schema migration
	Data migration
	Workflow creation
	Configuration migration
	Others migration functions

	Profiling and performance
	Full Text Indexing in CubicWeb
	Standard FTI process
	Yams and fulltext_container
	Customizing how entities are fetched during db-rebuild-fti
	Customizing get_words()

	Data Import
	Example
	Importer API
	Stores

	MassiveObjectStore

	Debug Channels
	Channels documentation
	Controller
	RQL
	SQL
	vreg
	registry_decisions

	API Reference
	Source connections pooler
	Configuration

	Web Frontend Development
	Publisher
	CubicWebPublisher API

	Controllers
	Overview
	Registration
	Concrete controllers

	The Request class (cubicweb.web.request)
	Overview
	API

	RQL search bar
	How search is performed

	The View system
	Principles
	Discovering possible views
	Basic class for views
	Class View
	Other basic view classes
	Examples of views class

	XML views, binaries views…

	Templates
	Non-templatable views
	Templatable views
	TheMainTemplate
	Layout and sections
	Configure the main template

	Other templates

	The Primary View
	Layout
	Primary view configuration
	Attributes/relations display location
	Display content

	Example of customization and creation

	The “Click and Edit” (also reledit) View
	Using reledit
	The reledit_ctrl rtag
	Disable reledit

	Base views
	Startup views
	Boxes
	The action box

	Table views
	Example
	Pro/cons of each approach

	XML and RSS views
	Overview
	RSS Channel Example

	URL publishing
	URL rewriting
	Breadcrumbs
	Display
	Building breadcrumbs

	The ‘download’ views
	Components
	Download views
	Embedded views

	Online documentation system
	Help views
	Actions

	Configuring the user interface
	Relation tags
	The uicfg module
	The uihelper module

	Ajax
	Javascript
	Conventions
	Server-side Javascript API
	Javascript events
	Important javascript AJAX APIS
	A simple example with asyncRemoteExec
	Anatomy of a reloadComponent call
	A simple reloadComponent example
	Anatomy of a loadxhtml call
	A simple example with loadxhtml
	A more real-life example
	Javascript library: overview
	API
	Testing javascript

	CSS Stylesheet
	Conventions
	Extending / overriding existing styles
	CubicWeb stylesheets

	Edition control
	HTML form construction
	Exploring the available forms
	The Automatic Entity Form
	Anatomy of a choices function
	Building self-posted form with custom fields/widgets
	APIs

	Dissection of an entity form
	Populating the database
	Looking at the html output
	The form enveloppe
	The attributes section
	The relations section
	The buttons zone

	The form validation process
	Validation loop
	Explanation

	The edit controller
	Edition handling
	Redirection control

	Examples
	(Automatic) Entity form
	Ad-hoc fields form

	The facets system
	Base classes for facets

	Internationalization
	String internationalization
	User defined string
	Generated string

	Handling the translation catalog
	Example

	Customizing the messages extraction process
	Editing po files
	Using a PO aware editor
	Structure of a PO file
	Contexts and CubicWeb
	Specialize translation for an application cube

	The property mecanism
	Property API
	Registering and using your own property

	HTTP cache management
	Cache policies
	Exception
	Helper functions

	Locate resources
	Static files handling

	Pyramid
	Quick start
	Prerequites
	Instance creation and running
	In backwards compatible mode
	Without backwards compatibility
	In a pyramid application

	The ‘pyramid’ command
	Options

	Settings
	Cubicweb Settings
	Pyramid Settings file
	Pyramid CubicWeb configuration entries

	Authentication
	Overview
	Customize

	The pyramid debug toolbar
	Custom panels
	General ‘CubicWeb’ Panel
	Registry Decisions Panel
	Registry Store
	RQL
	SQL

	Accessing the sources of the class/functions/method listing the debug panels
	Contributing

	Additional Services
	Undoing changes in CubicWeb
	What’s undoing in a CubicWeb application
	The notion transactions
	Public and private actions within a transaction
	(In)dependent transactions : the simple case
	More complex dependencies between transactions

	The undo feature for CubicWeb end-users
	The undo feature for CubicWeb application developers
	Overview
	The repository side
	The web side

	Conclusion
	Notes

	Appendixes
	Frequently Asked Questions (FAQ)
	Generalities
	Why do you use the LGPL license to prevent me from doing X ?
	Why does not CubicWeb have a template language ?
	Why do you think using pure python is better than using a template language ?
	CubicWeb looks pretty recent. Is it stable ?
	Why is the RQL query language looking similar to X ?
	Which ajax library is CubicWeb using ?

	Development
	How to change the instance logo ?
	How to create an anonymous user ?
	How to format an entity date attribute ?
	How to update a database after a schema modification ?
	I get NoSelectableObject exceptions, how do I debug selectors ?
	I get “database is locked” when executing tests
	What are hooks used for ?

	Configuration
	How to configure a LDAP source ?
	How to import LDAP users in CubicWeb ?

	Security
	How to reset the password for user joe ?
	I’ve just created a user in a group and it doesn’t work !
	How is security implemented ?
	Is it possible to bypass security from the UI (web front) part ?
	Can PostgreSQL and CubicWeb authentication work with kerberos ?

	Relation Query Language (RQL)
	Introduction
	Goals of RQL
	Comparison with existing languages
	SQL
	Sparql
	Versa
	Datalog

	The different types of queries
	RQL relation expressions
	RQL Operators

	RQL syntax
	Reserved keywords
	Case
	Variables and typing
	Virtual relations
	Literal expressions
	Operators
	Logical operators
	Mathematical operators
	Comparison operators
	String operators
	Operators priority

	Search Query
	Selection
	Grouping and aggregating
	Sorting
	Pagination
	Restrictions
	Having restrictions
	Sub-queries
	Union

	Available functions
	Aggregate functions
	String transformation functions
	Date extraction functions
	Other functions

	Examples
	Insertion query
	Update and relation creation queries
	Deletion query

	Debugging RQL
	Available levels
	Enable verbose output
	Detect largest RQL queries
	API

	RQL usecases
	Search bar
	Use of RQL in Card documents - ReST
	rql directive
	rql-table directive
	Use in python projects and CLI
	Use in JavaScript/React components

	Implementation
	BNF grammar
	Internal representation (syntactic tree)
	Known limitations
	Topics

	Introducing Mercurial
	Introduction
	Major commands
	Best Practices
	More information

	Installation dependencies
	Javascript docstrings
	Rest generation
	Docstring structure
	Javscript functions docstring
	function directive
	Function parameters
	Optional parameter specification

	Changelog
	3.38.10 (2023-07-10)
	👷 Bug fixes

	3.38.9 (2023-06-07)
	👷 Bug fixes

	3.38.8 (2023-03-24)
	👷 Bug fixes
	🤖 Continuous integration

	3.38.7 (2023-03-07)
	👷 Bug fixes

	3.38.6 (2023-02-13)
	👷 Bug fixes

	3.38.5 (2023-01-31)
	👷 Bug fixes

	3.38.4 (2023-01-17)
	🎉 New features

	3.38.3 (2023-01-12)
	👷 Bug fixes
	🤷 Various changes

	3.38.2 (2023-01-03)
	👷 Bug fixes

	3.38.1 (2022-12-05)
	🎉 New features
	👷 Bug fixes

	3.38.0 (2022-11-22)
	🎉 New features
	👷 Bug fixes
	🤖 Continuous integration
	🤷 Various changes

	3.37.17 (2023-07-10)
	👷 Bug fixes

	3.37.16 (2023-06-07)
	👷 Bug fixes

	3.37.15 (2023-03-24)
	👷 Bug fixes
	🤖 Continuous integration

	3.37.14 (2023-03-07)
	👷 Bug fixes

	3.37.13 (2023-01-27)
	🎉 New features

	3.37.12 (2023-01-17)
	🎉 New features

	3.37.11 (2023-01-12)
	👷 Bug fixes

	3.37.10 (2022-12-05)
	🎉 New features
	👷 Bug fixes

	3.37.9 (2022-11-15)
	👷 Bug fixes

	3.37.8 (2022-10-04)
	👷 Bug fixes
	🤷 Various changes

	3.37.7 (2022-09-22)
	👷 Bug fixes

	3.37.6 (2022-09-14)
	👷 Bug fixes

	3.37.5 (2022-08-30)
	👷 Bug fixes

	3.37.4 (2022-07-21)
	👷 Bug fixes
	🤷 Various changes

	3.37.3 (2022-07-13)
	👷 Bug fixes

	3.37.2 (2022-06-03)
	👷 Bug fixes

	3.37.1 (2022-06-01)
	🎉 New features
	👷 Bug fixes

	3.37.0 (2022-03-31)
	Breaking changes
	🎉 New features
	👷 Bug fixes
	🤖 Continuous integration
	🤷 Various changes

	3.36.15 (2023-03-24)
	👷 Bug fixes
	🤖 Continuous integration

	3.36.14 (2023-03-02)
	👷 Bug fixes

	3.36.13 (2023-03-02)
	👷 Bug fixes

	3.36.12 (2023-01-17)
	🎉 New features

	3.36.11 (2023-01-12)
	👷 Bug fixes

	3.36.10 (2022-11-15)
	👷 Bug fixes

	3.36.9 (2022-10-04)
	👷 Bug fixes
	🤷 Various changes

	3.36.8 (2022-09-22)
	👷 Bug fixes

	3.36.7 (2022-09-14)
	👷 Bug fixes

	3.36.6 (2022-08-30)
	👷 Bug fixes

	3.36.5 (2022-07-21)
	👷 Bug fixes
	🤷 Various changes

	3.36.4 (2022-07-13)
	3.36.3 (2022-06-03)
	👷 Bug fixes

	3.36.2 (2022-06-01)
	🎉 New features
	👷 Bug fixes

	3.36.1 (2022-03-31)
	👷 Bug fixes

	3.36.0 (2022-03-14)
	🎉 New features
	📝 Documentation

	3.35.12 (2022-11-15)
	👷 Bug fixes

	3.35.11 (2022-10-04)
	👷 Bug fixes
	🤷 Various changes

	3.35.10 (2022-09-22)
	👷 Bug fixes

	3.35.9 (2022-09-14)
	👷 Bug fixes

	3.35.8 (2022-08-30)
	👷 Bug fixes

	3.35.7 (2022-07-21)
	👷 Bug fixes
	🤷 Various changes

	3.35.6 (2022-07-13)
	🤷 Various changes

	3.35.5 (2022-07-13)
	👷 Bug fixes

	3.35.4 (2022-06-03)
	👷 Bug fixes

	3.35.3 (2022-06-01)
	🎉 New features
	👷 Bug fixes

	3.35.2 (2022-03-31)
	👷 Bug fixes

	3.35.1 (2022-03-09)
	3.35 (2022-02-02)
	Breaking changes
	🎉 New features
	👷 Bug fixes
	🤖 Continuous integration

	3.34.3 (2022-03-31)
	👷 Bug fixes

	3.34.2 (2022-03-09)
	👷 Bug fixes

	3.34.1 (2021-12-01)
	👷 Bug fixes

	3.34.0 (2021-11-23)
	Breaking changes
	🎉 New features
	👷 Bug fixes
	🤖 Continuous integration
	🤷 Various changes

	3.33.13 (2022-03-09)
	👷 Bug fixes

	3.33.12 (2021-12-01)
	👷 Bug fixes

	3.33.11 (2021-11-17)
	👷 Bug fixes

	3.33.10 (2021-11-17)
	Various changes

	3.33.9 (2021-11-08)
	👷 Bug fixes

	3.33.8 (2021-11-02)
	👷 Bug fixes

	3.33.7 (2021-10-12)
	👷 Bug fixes

	3.33.6 (2021-10-04)
	👷 Bug fixes

	3.33.5 (2021-09-29)
	👷 Bug fixes

	3.33.4 (2021-09-24)
	3.33.3 (2021-09-14)
	👷 Bug fixes

	3.33.2 (2021-09-02)
	📝 Documentation

	3.33.1 (2021-08-31)
	🎉 New features
	👷 Bug fixes
	📝 Documentation
	🤖 Continuous integration
	🤷 Various changes

	3.33.0 (2021-08-03)
	🎉 New features
	👷 Bug fixes
	🤖 Continuous integration
	🤷 Various changes

	3.32.14 (2021-12-01)
	👷 Bug fixes

	3.32.13 (2021-11-17)
	👷 Bug fixes

	3.32.12 (2021-11-17)
	Various changes

	3.32.11 (2021-11-08)
	👷 Bug fixes

	3.32.10 (2021-11-02)
	👷 Bug fixes

	3.32.9 (2021-10-12)
	👷 Bug fixes

	3.32.8 (2021-10-04)
	👷 Bug fixes

	3.32.7 (2021-09-29)
	👷 Bug fixes

	3.32.6 (2021-09-24)
	👷 Bug fixes

	3.32.5 (2021-09-14)
	3.32.4 (2021-09-02)
	👷 Bug fixes

	3.32.3 (2021-08-31)
	🎉 New features
	👷 Bug fixes

	3.32.2 (2021-07-30)
	🎉 New features
	👷 Bug fixes

	3.32.1 (2021-07-23)
	👷 Bug fixes
	🤖 Continuous integration

	3.32.0 (2021-07-13)
	🔒 Security, breaking changes
	Protection against XSS
	CSRF protection

	🚧 Other breaking changes
	🎉 New features
	👷 Bug fixes
	🤷 Various changes
	🤖 Continuous integration
	📋 Developer experience

	3.31.9 (2021-11-17)
	👷 Bug fixes

	3.31.8 (2021-11-17)
	🤷 Various changes

	3.31.7 (2021-11-02)
	👷 Bug fixes

	3.31.6 (2021-09-28)
	🤷 Various changes

	3.31.5 (2021-09-24)
	👷 Bug fixes

	3.31.4 (2021-09-14)
	3.31.3 (2021-07-23)
	👷 Bug fixes
	🤖 Continuous integration

	3.31.2 (2021-07-19)
	👷 Bug fixes

	3.31.1 (2021-05-18)
	Revert

	3.31 (2021-05-04)
	🎉 New features
	👷 Bug fixes
	Documentation
	🤖 Continuous integration
	🤷 Various changes

	3.30.1 (2021-07-23)
	👷 Bug fixes
	🤖 Continuous integration

	3.30.0 (2021-03-16)
	🎉 New features
	👷 Bug fixes
	Documentation
	🤖 Continuous integration
	🤷 Various changes

	3.29.6 (2021-10-07)
	🎉 New features

	3.29
	🎉 New features
	👷 Bug fixes
	Documentation
	🤖 Continuous integration
	🤷 Various changes

	3.28.2
	Fixed

	3.28.1
	Fixed

	3.28
	Added
	Changed
	Deprecated
	Removed
	Fixed

	3.27 (31 January 2020)
	New features
	Pyramid debugtoolbar and custom panel
	Backwards incompatible changes
	Deprecated code drops

	3.26 (1 February 2018)
	New features
	Backwards incompatible changes

	3.25 (14 April 2017)
	New features
	Backwards incompatible changes

	3.24 (2 November 2016)
	New features
	Major changes
	Changes to the massive store

	3.23 (24 June 2016)
	New features
	Backwards-incompatible changes
	Development

	3.22 (4 January 2016)
	New features
	User-visible changes
	API changes
	Deprecated code drops

	3.21 (10 July 2015)
	New features
	User-visible changes
	Code movement
	API changes
	Deprecated code drops

	3.20 (06/01/2015)
	New features
	API Changes
	Deprecated Code Drops

	3.19 (28/04/2015)
	New functionalities
	Behaviour Changes
	New Repository Access API
	API changes
	Deprecated Code Drops

	3.18 (10/01/2014)
	New functionalities
	API changes
	Deprecation
	Deprecated Code Drops

	3.17 (02/05/2013)
	New functionalities
	API changes
	Deprecation
	Deprecated Code Drops

	3.16 (25/01/2013)
	New functionalities
	API changes
	Unintrusive API changes
	User interface changes
	Other changes

	3.15 (12/04/2012)
	New functionnalities
	API changes
	Unintrusive API changes
	User interface changes

	3.14 (09/11/2011)
	API changes
	Unintrusive API changes
	RQL
	User interface changes
	Configuration

	API
	cubicweb
	Exceptions
	Base exceptions
	Repository exceptions
	Security Exceptions
	Source exceptions
	Registry exceptions
	Query exceptions
	Misc

	Utilities

	cubicweb.appobject
	The AppObject class

	cubicweb.cwvreg
	logilab.common.registry
	Predicates
	Debugging
	Exceptions

	cubicweb.dataimport
	Utilities
	Object Stores

	cubicweb.predicates
	cubicweb.pyramid
	cubicweb.pyramid.auth
	CubicWeb AuthTkt authentication policy
	Secrets

	cubicweb.pyramid.bwcompat
	cubicweb.pyramid.core
	cubicweb.pyramid.defaults
	cubicweb.pyramid.login
	Views

	cubicweb.pyramid.profile
	cubicweb.pyramid.session
	Web session when using pyramid
	Secrets

	cubicweb.pyramid.url_redirection
	Url redirection using pyramid

	cubicweb.req
	cubicweb.rset
	cubicweb.web.views.urlpublishing
	cubicweb.web.views.urlrewrite
	cubicweb.web
	Exceptions

	CubicWeb - The Semantic Web is a construction game!
	Main Features
	First steps
	Cubicweb core principle
	Routing
	Front development
	Data model and management
	Security
	Migrate your schema
	Cubicweb configuration files
	Common Web application tools
	Development
	System administration
	CubicWeb’s ecosystem
	How to contribute

	Python Module Index
	Index

